

HT9291/HT9292/HT9294 TinyPower™ Operation Amplifier

Features

• Wide operating voltage: 1.4V to 5.5V

• Low quiescent current: typical 0.6µA/amplifier

· Rail-to-Rail output

• Gain bandwidth: 11kHz typical

· Unity gain stable

 Available in Single, Dual and Quad OP's package types

· Package type:

HT9291: SOT23-5HT9292: 8-pin SOPHT9294: 14-pin SOP

Applications

· Wearable products

• Temperature measurement

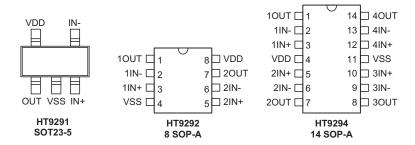
· Battery powered products

· Portable equipment

· Low power sensors

General Description

The Holtek HT9291/HT9292/HT9294 range of Low Power Operation Amplifiers offer the advantage of a single supply voltage down to as low as 1.4V as well as the advantages of an extremely low quiescent current of only $0.6\mu A/\text{amplifier}$. One other major advantage of these devices lie in their rail-to-rail voltage operation for maximum range. The devices also provide a typical gain bandwidth product of 11kHz and are also unity gain stable. The devices are available in a range of packages according the number of internal amplifiers. The special characteristics of these devices will ensure their excellent use in applications with stringent low power demands such as portable products, battery powered equipment, low power sensor signal processing etc.


Selection Table

Part No.	Amplifiers	Package
HT9291	1	SOT23-5
HT9292	2	8SOP
HT9294	4	14SOP

Block Diagram

Pin Assignment

Pin Descriptions

HT9291

Pin No.	Pin Name	Description
1	OUT	Analog output
2	VSS	Negative power supply
3	IN+	Non-inverting input
4	IN-	Inverting input
5	VDD	Positive power supply

HT9292

Pin No.	Pin Name	Description
1	10UT	Analog output (operation amplifier 1)
2	1IN-	Inverting input (operation amplifier 1)
3	1IN+	Non-inverting input (operation amplifier 1)
4	VSS	Negative power supply
5	2IN+	Non-inverting input (operation amplifier 2)
6	2IN-	Inverting input (operation amplifier 2)
7	2OUT	Analog output (operation amplifier 2)
8	VDD	Positive power supply

HT9294

Pin No.	Pin Name	Description
1	10UT	Analog output (operation amplifier 1)
2	1IN-	Inverting input (operation amplifier 1)
3	1IN+	Non-inverting input (operation amplifier 1)
4	VDD	Positive power supply
5	2IN+	Non-inverting input (operation amplifier 2)
6	2IN-	Inverting input (operation amplifier 2)
7	2OUT	Analog output (operation amplifier 2)
8	3OUT	Analog output (operation amplifier 3)
9	3IN-	Inverting input (operation amplifier 3)
10	3IN+	Non-inverting input (operation amplifier 3)
11	VSS	Negative power supply
12	4IN+	Non-inverting input (operation amplifier 4)
13	4IN-	Inverting input (operation amplifier 4)
14	4OUT	Analog output (operation amplifier 4)

Rev. 1.30 2 July 03, 2019

Absolute Maximum Ratings

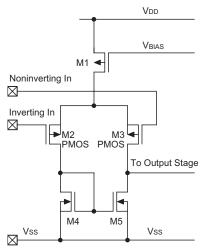
Supply Voltage6.0V	Input Voltage V_{SS} -0.3 V ~ V_{DD} +0.3 V
Difference Input Voltage±(V _{DD} -V _{SS})	ESD protection on all pins (HBM;MM)≥4kV; 400V
Storage Temperature65°C to +150°C	Operating Temperature40°C to 85°C
Junction Temperature150°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

Unless otherwise indicated, V_{SS} =GND, Ta=25°C, V_{CM} = V_{DD} /2, V_L = V_{DD} /2, and R_L =1M Ω to V_L , C_L =60pF

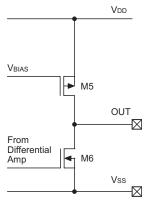
	_	Test Conditions					
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	_	_	1.4	_	5.5	V
Vos	Input Offset Voltage	5V	V _{IN} =V _{CM} /2	-5.0	_	5.0	mV
ΔVos/ΔT	Drift with Temperature	5V	V _{IN} =V _{CM} /2	_	±2	_	μV/°C
los	Input Offset Current	5V	Ta=25°C	_	±5	_	рА
IΒ	Input Bias Current	5V	Ta=25°C	_	±50	_	рА
V _{СМ}	Input Common Mode Range	5V	_	0	_	V _{DD} -1.2	V
V _{OH}	Maximum Output Voltage Swing	5V	0.5V input overdrive R_L =1M Ω to V_L	V _{SS} +10	_	V _{DD} -10	mV
VoL	Maximum Output Voltage Swing	5V	0.5V input overdrive R_L =50kΩ to V_L	V _{SS} +20	_	V _{DD} -50	mV
Aol	DC Open-Loop Gain (large signal)	5V	V_{OUT} =0.2V to V_{DD} -0.2V, V_{IN} = V_{CM} /2	70	100	_	dB
GBW	Gain BandWidth Product	5V	$R_L=1M\Omega$, $C_L=60pF$, $V_{IN}=V_{CM}/2$	_	11	_	kHz
Фт	Phase Margin	5V	$R_L=1M\Omega, C_L=60pF$ $G=+1V/V, V_{IN+}=V_{DD}/2$	_	50	_	٥
CMRR	Common Mode Rejection Ratio	5V	V _{CM} =0V to V _{DD} -1.4V	60	90	_	dB
PSRR	Power Supply Rejection Ratio	5V	V _{CM} = 0.2V	65	95	_	dB
	Cupply Current Der Cingle Amplifier	5V	Io=0A for HT9291	0.50	0.80	1.20	μA
Supply Current Per Single Ampl	Supply Current Per Single Amplifier	υV	lo=0A for HT9292/HT9294	0.30	0.60	1.00	μA
SR	Slew Rate at Unity Gain	5V	R _L =1MΩ, C _L =60pF	_	5	_	V/ms
Io_source	Output Short Circuit Source Current	5V	$V_{IN+} - V_{IN-} \ge 10 \text{mV}$	-0.3	-1.2	_	mA
I _{O_SINK}	Output Short Circuit Sink Current	5V	$V_{IN-} - V_{IN+} \ge 10 \text{mV}$	1	4		mA


Rev. 1.30 3 July 03, 2019

Functional Description

Input Stage

The input stage of op amps are nominal PMOS differential amplifiers (see the following diagram), therefore the common mode input voltage can extend to $V_{\rm SS}$ -0.6V. On the other hand the common mode input voltage has to be maintained below ($V_{\rm DD}$ -1.2V) to keep the input device (M2 and M3) active. This implies that when using HT9291/HT9292/HT9294 as a voltage follower, the input as well as output active range will be limited between $V_{\rm SS}$ - $V_{\rm DD}$ -1V (approx.). Avoid applying any voltage greater than $V_{\rm DD}$ +0.6V or less than $V_{\rm SS}$ -0.6V to the input pins, otherwise the internal input protection devices may be damaged.


Since the input impedance of PMOS is inherently very high, it can directly couple to high impedance elements without loading effect. For example, coupling to ceramic transducers, integrating capacitor and resistor networks.

Actually the extremly high input impedance is its major advantage over the bipolar counterpart, in some application fields such as integrators where the input current of op amp can cause significant error.

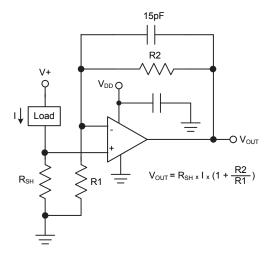
Output Stage

The HT9291/HT9292/HT9294 uses push-pull CMOS configuration as the output stage of op amps to minimize low power consumption and to provide adequate output driving current.

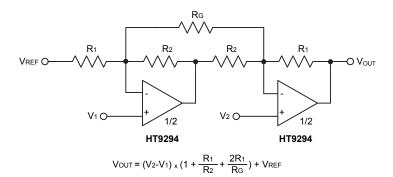
Note that the output is an unbuffered structure, therefore the open loop gain will be affected by the load resistor since the voltage gain of this stage can be expressed as $(gm5+gm6)\times R_L$.

Because of the consideration for minimized power consumption, the output short circuit current is limited to about -1.2mA for source drive and 4mA for sink drive. This is believed to be enough for most low power systems, however it is recommended to use the load resistor of >1M Ω for normal applications. In case of heavy load driving, an external buffer stage using bipolar transistors is recommended.

The HT9291/HT9292/HT9294 is internally compensated for AC stability and capable to withstand up to a 60pF capacitive load.


Rev. 1.30 4 July 03, 2019

July 03, 2019


Application Circuits

Low Side Battery Current Sensor

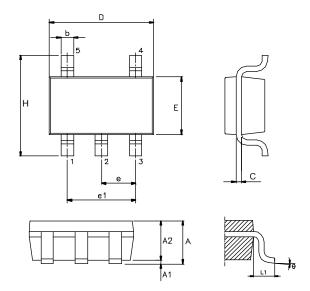
Two Op Amp Instrumentation Amplifier

Rev. 1.30

5

Package Information

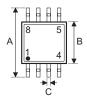
Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the package information.


Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

Rev. 1.30 6 July 03, 2019

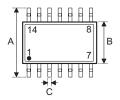
5-pin SOT23-5 Outline Dimensions

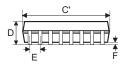

Cumbal		Dimensions in inch		
Symbol	Min.	Nom.	Max.	
A	_	_	0.057	
A1	_	_	0.006	
A2	0.035	0.045	0.051	
b	0.012	_	0.020	
С	0.003	_	0.009	
D	_	0.114 BSC	_	
E	_	0.063 BSC	_	
е	_	0.037 BSC	_	
e1	_	0.075 BSC	_	
Н	_	0.110 BSC	_	
L1	_	0.024 BSC	_	
θ	0°	_	8°	

Symbol		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	_	_	1.45
A1	_	_	0.15
A2	0.90	1.15	1.30
b	0.30	_	0.50
С	0.08	_	0.22
D	_	2.90 BSC	_
E	_	1.60 BSC	_
е	_	0.95 BSC	_
e1	_	1.90 BSC	_
Н	_	2.80 BSC	_
L1	_	0.60 BSC	_
θ	0°	_	8°

Rev. 1.30 7 July 03, 2019

8-pin SOP (150mil) Outline Dimensions


Cumbal	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	_	0.236 BSC	_	
В	_	0.154 BSC	_	
С	0.012	_	0.020	
C'	_	0.193 BSC	_	
D	_	_	0.069	
E	_	0.050 BSC	_	
F	0.004	_	0.010	
G	0.016	_	0.050	
Н	0.004	_	0.010	
α	0°	_	8°	


Symbol	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	—F	6.00 BSC	_	
В	_	3.90 BSC	_	
С	0.31	_	0.51	
C'	_	4.90 BSC	_	
D	_	_	1.75	
Е	_	1.27 BSC	_	
F	0.10	_	0.25	
G	0.40	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

Rev. 1.30 8 July 03, 2019

14-pin SOP (150mil) Outline Dimensions

Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
A	_	0.236 BSC	_	
В	_	0.154 BSC	_	
С	0.012	_	0.020	
C'	_	0.341 BSC	_	
D	_	_	0.069	
E	_	0.050 BSC	_	
F	0.004	_	0.010	
G	0.016	_	0.050	
Н	0.004	_	0.010	
α	0°	_	8°	

Cumbal	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	_	6.00 BSC	_	
В	_	3.90 BSC		
С	0.31	_	0.51	
C'	_	8.65 BSC	_	
D	_	_	1.75	
E	_	1.27 BSC	_	
F	0.10	_	0.25	
G	0.40	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

Rev. 1.30 9 July 03, 2019

Copyright[©] 2019 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com

Rev. 1.30 July 03, 2019