

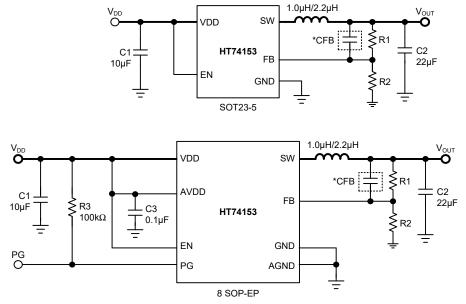
Features

- Wide input range of $V_{\mbox{\scriptsize IN}}$ from 2.5V to 6.0V
- + Output voltage range from 0.6V to V_{DD}
- · Internal low on-resistance switches
 - High-Side R_{DS(ON)} 100mΩ
 - Low-Side R_{DS(ON)} 100mΩ
- 100% duty cycle operation
- Switching frequency: 1.2MHz
- PFM mode operation when no load/light load conditions
- Output voltage power good indicator when $V_{OUT}=0.95 \times V_{OUT(TARGET)}$ (8SOP-EP)
- Low IC surface temperature in short circuit protection
- Protection features
 - + V_{DD} under voltage lock-out
 - Cycle-by-Cycle over current protection
 - Thermal shutdown protection
 - Output short-circuit protection
 - Output over-voltage protection
- Package types: 8-pin SOP-EP and 5-pin SOT23

Applications

- Single Li-Battery applications and small motor driver applications
- Rechargeable AA batteries
- · Laser demarcation device
- Portable toy
- 5V USB/Adaptor power source
- 3.3V DC source

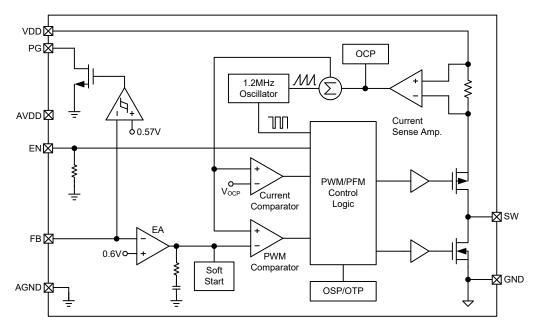
General Description


The HT74153 is a high efficiency synchronous step-down converter capable of delivering 2A output current. It can operate over a wide input voltage range from 2.5V to 6.0V and integrates 100m Ω low on-resistance main and rectified switches to minimize the conduction losses. Up to 1.2MHz switching frequency in PWM allows to use the small surface mount inductors and capacitors in applications.

The automatically PWM/PFM mode switching is useful to drive up to 2A load current and also decrease its standby current in no load condition. The Hysteretic PFM mode extends the battery life by reducing the quiescent current during the system standby. In the shutdown mode, the device turns off and consumes only 0.1μ A input current.

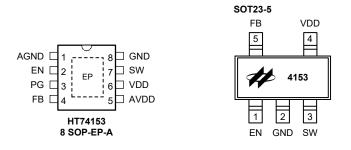
The HT74153 also provides 100% duty cycle operation. When the input supply voltage decreases toward the targeted output voltage, the High-Side MOSFET will always turn on and the output voltage tracks the input voltage, which can extend the battery life.

Typical Application Circuit



Note: *CFB option is recommended to refer the "Application Information-Load Transient Compensation Design" chapter.

Selection Table


Part No.	Package	Marking
HT74153	8SOP-EP	HT74153
	SOT23-5	4153

Block Diagram

Pin Assignment

Pin Description

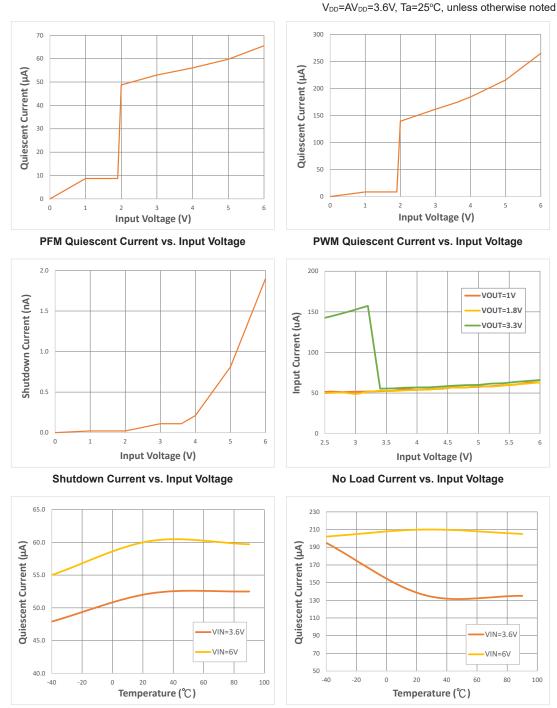
Pin	Pin	No.	Туре	Description	
Name	8SOP-EP	SOT23-5	Type		
AGND	1	—	G	Analog ground pin	
EN	2	1	I	Chip enable pin. High Active. Internally connect a $1M\Omega$ pull down resistor	
PG	3		0	Output power good indicate pin. Connect a $100k\Omega$ pull up resistor to VDD	
FB	4	5	I	Output voltage feedback pin. Set output voltage via resistor dividers R1 and R2	
AVDD	5	_	Р	Analog input pin. Connect a 0.1µF ceramic capacitor to GND at least	
VDD	6	4	Р	Power input pin. Connect a $10\mu F$ ceramic capacitor to GND at least	
SW	7	3	0	Switching node. Connect to power inductor	
GND	8	2	G	Power ground pin	
EP	_	_	G	Exposed pad. Connect to AGND	

Absolute Maximum Ratings

Parameter	Value	Unit	
VDD, AVDD	-0.3 ~ +6.4	V	
SW		-0.3 ~ (V _{DD} +0.3)	V
EN, PG, FB		-0.3 ~ +6.4	V
Operating Temperature Range		-40 ~ +85	°C
Output Current	Thermal Limits		
Maximum Junction Temperature		+150	°C
Storage Temperature Range		-60 ~ +150	°C
Lead Temperature (Soldering 10sec)		+300	°C
ESD Susceptibility	Human Body Model	4000	V
	Machine Model	200	V
Junction-to-Ambient Thermal Resistance, θ_{JA}	8SOP-EP	125	°C/W
	SOT23-5	220	C/VV

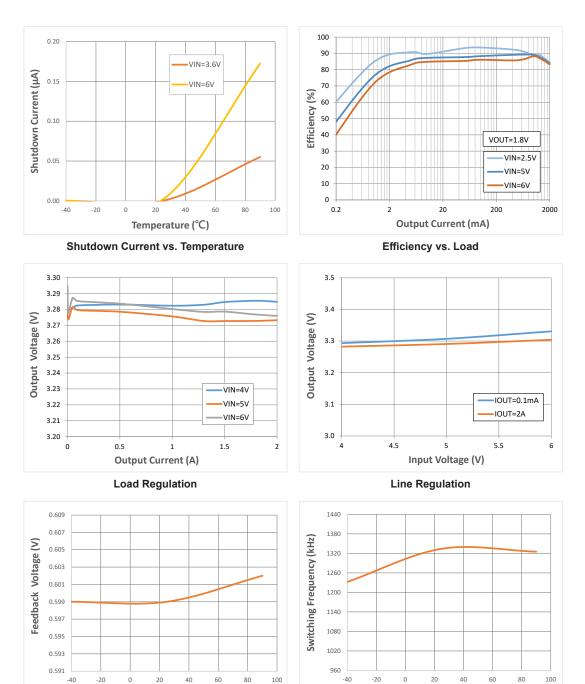
Recommended Operating Range

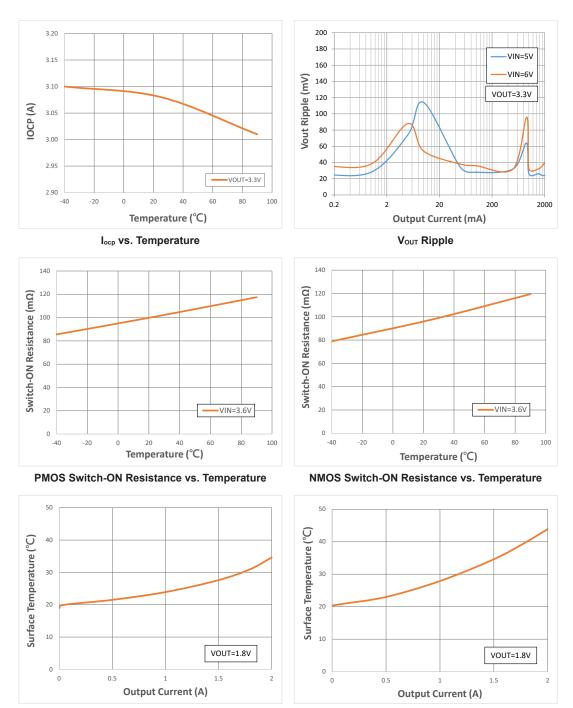
Parameter	Value	Unit
Vdd, AVdd	2.5 ~ 6.0	V
Iout(max)	2	A


Note that Absolute Maximum Ratings indicate limitations beyond which damage to the device may occur. Recommended Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specified performance limits.

Electrical Characteristics

V_{DD}=AV_{DD}=3.6V, Ta=25°C, unless otherwise specified Symbol **Test Condition** Unit Parameter Min. Тур. Max. Supply Voltage Vdd Input Voltage VDD=AVDD 2.5 6.0 V I_{AVDD}+I_{VDD}, PWM, V_{FB}=0.58V 170 210 Input Supply Current μA lpp IAVDD+IVDD, PFM, VFB=0.62V 50 70 $\mathbf{I}_{\mathsf{OFF}}$ Shutdown Current $I_{AVDD}+I_{VDD}, V_{AVDD}=V_{VDD}=5V, V_{EN}=0V$ 0.1 0.5 μΑ **Buck Converter** Output Voltage V Vout 0.6 V_{DD} ____ ____ Switching Frequency 1200 1440 fsw V_{FB}=0.58V 960 kHz Minimum ON-Time 100 TON(min) ____ ____ ns ____ PMOS Switch-ON Resistance 100 mΩ R_{DS(on)_P} ____ NMOS Switch-ON Resistance 100 RDS(on)_N ____ mΩ V_{EN}=0V, V_{SW}=0V to V_{DD}. Measure 1.0 0.1 μA ILEAK SW Leakage Current _ Isw V_{FB} Feedback Voltage 2.5V≤V_{DD}≤6V 591 600 609 mV FB Leakage Current I_{FB} V_{FB}=5V 0.1 μA _____ Vін EN High Voltage Threshold 2.5V≤V_{DD}≤6V V 1.2 ____ ____ VIL EN Low Voltage Threshold 2.5V≤V_{DD}≤6V ____ 0.4 V ____ $R_{PD_{EN}}$ EN Pull Down Resistor 1 MΩ Protections VUVLO+ Input Supply Turn ON Level UVLO+ 2.1 V Input Supply Turn OFF Level UVLO-V V_{UVLO-} 1.6 **I**OCP **Over Current Protection Threshold** ____ 3.2 А ____ Vosp **Output Short-Circuit Threshold** Measure FB 300 mV **OSP** Repeat Time 21 TOSP ms ____ ____ _ Thermal Shutdown Threshold OTP 150 °C TSHD ____ T_{HYS} Thermal Shutdown Hysteresis 15 °C _ Others R_{PG} PG Threshold Measure FB, V_{FB_PG}/V_{FB} % 95 ____ V_{FB}=0.5V. Source 1mA to PG, V_{PG(OL)} PG Sink Capability 0.4 V measure PG Tss Soft Start Time 07 ms _ VFB_OVP Prevent Output Overshoot 640 660 680 mV

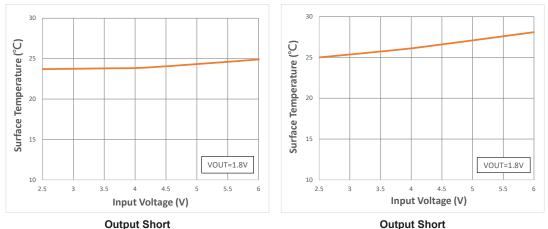

Typical Performance Characteristics

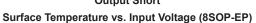

Feedback Voltage vs. Temperature

Temperature (°C)

fsw vs. Temperature

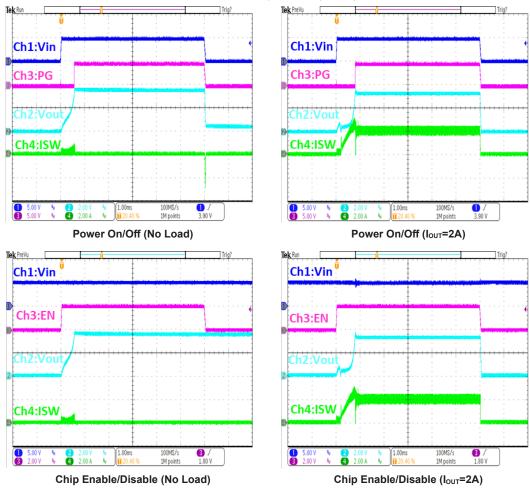
Temperature (°C)

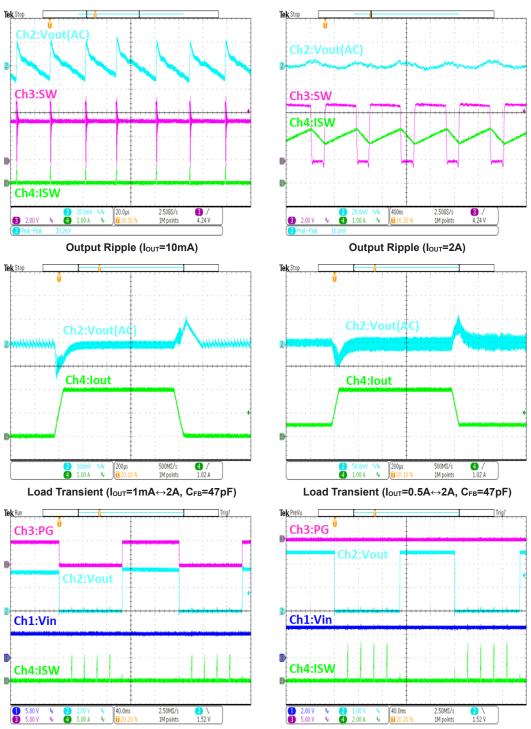




Surface Temperature vs. Output Current (8SOP-EP)

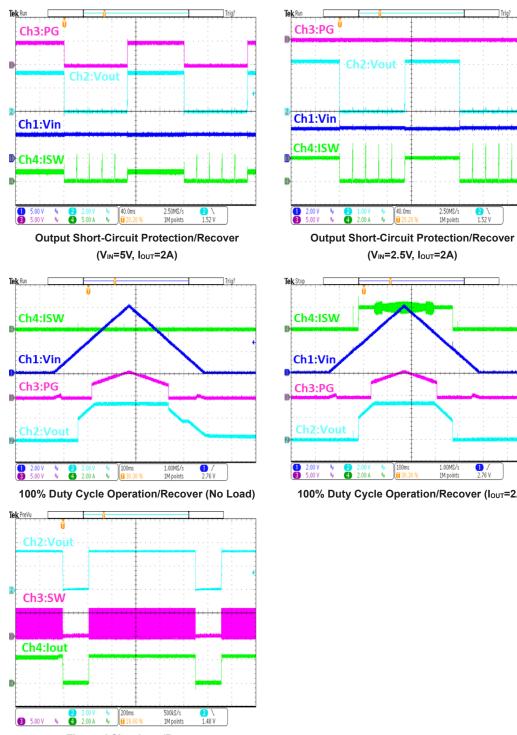
Surface Temperature vs. Output Current (SOT23-5)



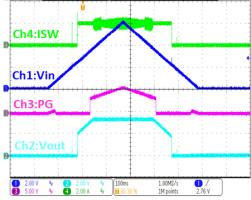

Output Short Surface Temperature vs. Input Voltage (SOT23-5)

Typical Performance Characteristics (Continued)

 V_{DD} =AV_{DD}=5V, V_{OUT} =3.3V, L=1µH, C_{IN}=10µF+0.1µF, and Ta=25°C, unless otherwise noted



Output Short-Circuit Protection/Recover (V_{IN}=5V)



Trig?

Thermal Shutdown/Recover

100% Duty Cycle Operation/Recover (Iout=2A)

Functional Description

PWM/PFM Control Operation

Depends on the output current requirement, the HT74153 realizes 3 kinds of operation modes: PWM Mode, PFM Mode and Shutdown Mode. When the light load current, the device operates in the PFM mode to reduce the input current consumption and improve the efficiency. The heavier load current drives the HT74153 enters the PWM mode automatically to keep the high efficiency and better transient response. In the Shutdown mode, the HT74153 turns off all devices to offer down to 0.1μ A input current consumption.

100% Duty Cycle Operation

When the input supply voltage decreases toward the targeted output voltage, the duty cycle increases to 100% to extend the battery life, and the output voltage tracks the input voltage minus the voltage drop cross the internal High-Side MOSFET and inductor. In this condition, the PG signal is pulled low because the V_{OUT} drops to 95%.

Start-up/Soft Start

The soft start function is realized 0.7ms that smooth the output voltage and prevent the large input inrush current via controlled-charging an internal soft start capacitor during power start-up. The soft start is only activated when EN pin goes from low to high after $V_{IN} \ge 2.1V$ (V_{UVLO+}). During the soft start procedure, the OSP detection is ignored. The start-up time depends on the output capacitance and demand load current during power start-up. Note that the temperature T_j should be less than (T_{SDH} - T_{HYS}) during power start-up.

Output Voltage Setting

The external resistor divider sets the output voltage, for details see the Application Circuit. The feedback resistor, R1, also sets the feedback loop bandwidth with the internal compensation capacitor. R2 is calculated in equation below and recommended less than $200k\Omega$.

$$R2=R1/[(V_{OUT}/0.6V)-1]$$
 (Ω)

Power Good Indicator

The open-drain type output requires a pull-up resistor on the PG pin. When the output voltage is rising, the PG pin is driven down internally in soft start, shutdown periods and released until the FB voltage exceeds 95% of nominal regulation target voltage, i.e. 0.57V. In addition, there's a debounce time around 80µs after the FB voltage drops to 0.57V in order to prevent the misoperation.

Under Voltage Lock-Out Protection (UVLO)

The HT74153 implements the input Under Voltage Lock-Out (UVLO) function to prevent the misoperation during power on procedure. When the input voltage exceeds V_{UVLO^+} , the converter starts operating. On the contrary, when the input voltage falls below V_{UVLO^-} , the converter shuts off the output. The hysteresis voltage is designed to prevent the noise-caused reset.

Over Current Protection (OCP)

The HT74153 has a 3.2A (I_{OCP}) peak current for monitoring the internal High-Side switch (P-type MOSFET). When the OCP threshold is detected, the internal High-Side switch is turned off and the internal Low-Side switch (N-type MOSFET) is turned on until next cycle. It is used to protect the external power inductor to exceed its saturation current. When the OCP function occurs, the input peak current is limited and the output voltage is decreased.

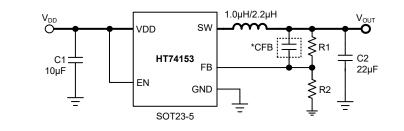
Output Short Circuit Protection (OSP)

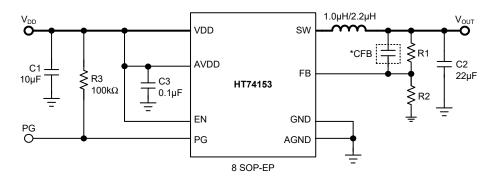
When the FB voltage is drop below 300mV, the HT74153 enters the output short-circuit protection (OSP) mode. In the OSP mode, the HT74153 enters the hiccup mode, disables both High/Low-Side MOSFETs and discharges the internal soft-start capacitor. After T_{OSP} rest to avoid the heating accumulation, the HT74153 reacts the soft-start procedure until the output short-circuit phenomenon ceases.

Over-Voltage Protection (OVP)

The HT74153 has an over-voltage protection function when the V_{FB} is over 660mV (V_{FB_OVP}). When the HT74153 enters the over-voltage protection function, both the high/low-side MOSFETs are disable. Until the V_{FB} is lower than V_{FB_OVP} in next cycle, the HT74153 exits the protection and the MOSFETs start to operate.

Thermal Shutdown (OTP)


If the die temperature exceeds the internal limit threshold, T_{SHD} , the device will turn off all power MOSFETs until the temperature decreases to a specific level less than the recovery temperature, T_{HYS} .



Protection Type	Trigger Condition	Vout&PG	Recovery Condition	
Under Voltage Lockout	VIN is lower than VUVI O-	V _{OUT} is 0V	VIN is higher than VUVLO+	
(UVLO)		PG is LOW		
Over Current Brotestion		VOUT drop depends on duty cycle	Lie lower then Lin	
Over Current Protection (OCP)	I _L rises to I _{OCP}	PG is LOW when V_{OUT} is lower 95% over 80 μs	I∟ is lower than I _{OCP} in next cycle	
Output Short Circuit	V_{FB} drops to V_{OSP}	Vout is 0V	V _{FB} is higher than V _{OSP} after T _{OSP} +T _{SS}	
Protection (OSP)		PG is LOW when OSP is over 80µs		
Over Voltage Protection		Peak Vout is 110% Vout	V _{FB} is lower than V _{FB OVP}	
(OVP)	V_{FB} is over V_{FB_OVP}	PG is HIGH	in next cycle	
Over Temperature		V _{OUT} drops to 0V	Ti deereese to T	
Protection (OTP)	Tj is over T _{SHD}	PG is LOW when OTP is over 80µs	Tj decreases to T _{HYS}	

List of Protection Function

Component Selection Guide

Recommended Component Values

Reference	Value	Description	Part Number	Manufacturer
C1	10µF	Capacitor, Ceramic, 10µF,10V, X7R, 0805	LMK212B7106KG-TD	Taiyo Yuden
C2	22µF	Capacitor, Ceramic, 22µF, 25V, X5R, 0805	GRM21BR61E226ME44L	Murata
C3	0.1µF	Capacitor, Ceramic, 0.1µF, 50V, X5R, 0603	0603B104K500CT	Walsin
*CFB	47pF	Capacitor, Ceramic, 47pF, 50V, NPO, 0603	GRM1885C1H470JA01D	Murata
L1	1.0µH	Inductor, 7.1mΩ, I _{Rate} =14.1A, 7.1mm×6.5mm×3mm	SPM6530T-1R0M120	TDK
	2.2µH	Inductor, 17.3mΩ, I _{Rate} =8.4A, 7.1mm×6.5mm×3mm	SPM6530T-2R2M	TDK
R3	100kΩ	Resistor, Chip, 1%, 0603		

Vout (V)	Package	R1 (kΩ)	R2 (kΩ)
1.8		400 (±1%)	200 (±1%)
2.5		630 (±1%)	200 (±1%)
2.7	SMD 0603	700 (±1%)	200 (±1%)
3.0		800 (±1%)	200 (±1%)
3.3		900 (±1%)	200 (±1%)

Note: 1. V_{OUT}=0.6V×(R1+R2)/R2.

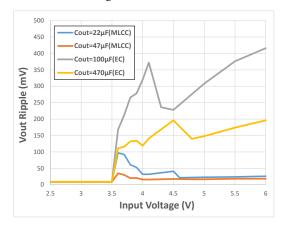
2. *CFB option is recommended to refer the "Application Information-Load Transient Compensation Design" chapter.

Power Inductor

Use an inductor with a DC current rating at least 25% percent higher than the maximum load current for most applications. The DC resistance of the inductor is a key parameter for the efficiency. Concerned efficiency, the inductor's DC resistance should be less than 200m Ω . For most application, the inductor value can be calculated from the following equation.

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times I_{ripple} \times f_{SW}}$$

A higher value of ripple current reduces the inductance value, but increases the conductance loss, core loss, and current stress for the inductor and switch devices. A suggest choice is for the inductor ripple current to be 30% of the maximum load current.


Input Capacitor

A low ESR ceramic capacitor, C_{IN} , is needed between the VIN pin and GND pin. Use ceramic capacitors with X5R or X7R dielectrics for their low ESRs and small temperature coefficients. For most applications, above 10µF capacitor will sufficient.

Output Capacitor

The selection of C_{OUT} is driven by the maximum allowable output voltage ripple. Use ceramic capacitors with X5R or X7R dielectrics for their low ESR characteristics. The capacitor value is good starting point with an ESR or 0.1Ω or less and should be over 22μ F.

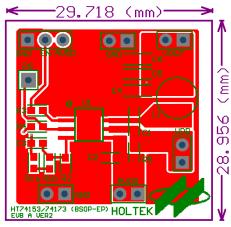
The selection of COUT is driven by the maximum allowable output voltage ripple. Use ceramic capacitors with X5R or X7R dielectrics for their low ESR characteristics. The capacitor value is good starting point with an ESR or 0.1Ω or less and capacitance should be in the range of 10μ F to 470μ F. It is nececery to use MLCC in low output voltage ripple application. Only ceramics have the extremely low ESR that is needed to. The comparison of low ESR and non-low ESR is shown in Fig.1.

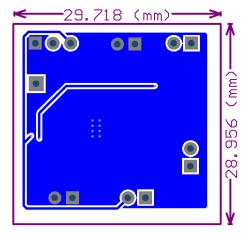
Application Information

Interference Consideration

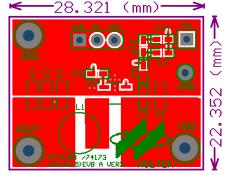
If the noise is too high due to external interference in the application environment or PCB layout, resulting in too high output voltage, it is recommended to select 1/10 of the resistance value table recommended by FB, and it is recommended to use a larger ground plane to improve noise and long-term reliability. C3, R1, R2 loops should be as close as possible to the device.

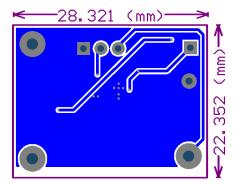
Load Transient Compensation Design


The HT74153 utilizes current-mode control to regulate the output voltage. When a load step occurs, PFM/PWM control logic takes several cycles to respond to a step in load current, causing output voltage rapid drop. Thus, adding a 47pF capacitor CFB will improve output voltage drop when load transient occurs.



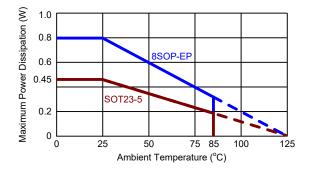
Layout Consideration Guide


To achieve the best efficiency and to reduce the conducted noise, there are some important points to note regarding the PCB layout.


- 1. The input/output capacitors and the inductor should be placed as close as possible to the IC.
- 2. Ensure all feedback connections are short and direct. Place the feedback resistors and compensation components as close to the FB pin as possible, but should not be close to the SW nodes to avoid noise interference.
- 3. L1 should be placed as close to the IC as possible. Minimize the noise from the switch node.
- 4. Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance.

8SOP-EP PCB Layout Example

SOT23-5 PCB Layout Example


Thermal Considerations

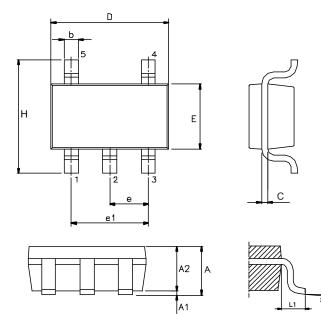
The maximum power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of the surrounding airflow and the allowed difference between the junction and ambient temperatures. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_a) / \theta_{JA} \qquad (W)$$

Where $T_{J(MAX)}$ is the maximum junction temperature, T_a is the ambient temperature and θ_{JA} is the junction to ambient thermal resistance of IC package (125°C/W for 8-pin SOP-EP).

For maximum operating rating conditions, the maximum junction temperature is 150°C. However, it's recommended that the maximum junction temperature does not exceed 125°C in normal operation to keep high reliability. The derating curve of maximum power dissipation is as follows:

Package Information

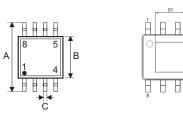

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

5-pin SOT23 Outline Dimensions

Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
А	_	_	0.057	
A1	_	—	0.006	
A2	0.035	0.045	0.051	
b	0.012	—	0.020	
С	0.003	_	0.009	
D	_	0.114 BSC	_	
E	_	0.063 BSC	_	
е	_	0.037 BSC	_	
e1	_	0.075 BSC	_	
Н	_	0.110 BSC	_	
L1	_	0.024 BSC	_	
θ	0°	_	8°	


Cumphed	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	_	_	1.45	
A1	—	—	0.15	
A2	0.90	1.15	1.30	
b	0.30	_	0.50	
С	0.08	—	0.22	
D	_	2.90 BSC	_	
E	_	1.60 BSC	—	
е	_	0.95 BSC	—	
e1	_	1.90 BSC	—	
Н	_	2.80 BSC	—	
L1	_	0.60 BSC	—	
θ	0°	—	8°	

e

HT74153

8-pin SOP-EP (150mil) Outline Dimensions

ដ

Symbol		Dimensions in inch	
Symbol	Min.	Nom.	Max.
A	_	0.236 BSC	—
В	_	0.154 BSC	—
С	0.012	—	0.020
C'	_	0.193 BSC	—
D	_	—	0.069
D1	0.059	—	—
E	_	0.050 BSC	—
E2	0.039	—	—
F	0.000	—	0.006
G	0.016		0.050
Н	0.004	—	0.010
α	0°	—	8°

Symbol		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	_	6.00 BSC	_
В	—	3.90 BSC	—
С	0.31	—	0.51
C'	_	4.90 BSC	—
D	_	_	1.75
D1	1.50	—	_
E	—	1.27 BSC	—
E2	1.00	—	_
F	0.00	_	0.15
G	0.40	_	1.27
Н	0.10	—	0.25
α	0°	_	8°

Copyright[®] 2023 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.