HT73xx-2 30V, 250mA TinyPower™ LDO

Features

- Low power consumption
- · Low voltage drop
- · Low temperature coefficient
- High input voltage up to 30V
- Output voltage accuracy: tolerance $\pm 1\%$
- · Over current protection
- Package types: 3-pin SOT89 and 8-pin SOP-EP

Applications

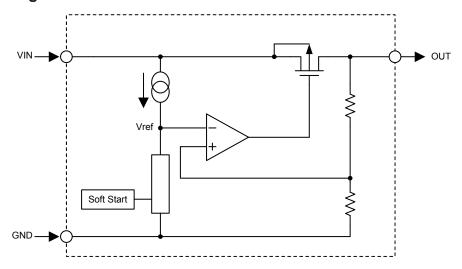
- · Battery-powered equipment
- · Communication equipment
- · Audio/Video equipment

General Description

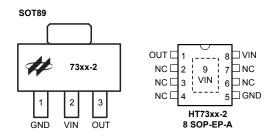
The HT73xx-2 device series are low power high voltage regulators implemented in CMOS technology which have the advantages of low voltage drop and low quiescent current. They allow input voltages as high as 30V. They are available with several fixed output voltages ranging from 2.1V to 5.0V. The soft-start function inhibits the problem of output overshoot during power on.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.

Selection Table


Part No.	Output Voltage	Package	Marking		
HT7321-2	2.1V				
HT7323-2	2.3V				
HT7325-2	2.5V				
HT7327-2	2.7V				
HT7330-2	3.0V	SOT89	73xx-2 (for SOT89)		
HT7333-2	3.3V	8SOP-EP	HT73xx-2 (for 8SOP-EP)		
HT7336-2	3.6V				
HT7340-2	4.0V				
HT7344-2	4.4V				
HT7350-2	5.0V				

Note: "xx" stands for output voltages


Rev. 1.20 1 December 11, 2018

Block Diagram

Pin Assignment

Pin Descriptions

Pin	No.	Din Nama	Din Description
SOT89	8SOP-EP	Pin Name	Pin Description
1	5	GND	Ground pin
2	8, 9	VIN	Input pin
3	1	OUT Output pin	
_	2, 3, 4, 6, 7	NC No connection	

Rev. 1.20 2 December 11, 2018

Absolute Maximum Ratings

Parameter	Value	Unit	
V _{IN}	-0.3 to +33	V	
Operating Temperature Range, Ta		-40 to +85	°C
Maximum Junction Temperature, T _{J(MAX)}	+150	°C	
Storage Temperature Range	-65 to +165	°C	
Junetian to Ambient Thermal Desistance O	SOT89	200	°C/W
Junction-to-Ambient Thermal Resistance, θ _{JA}	8SOP-EP	125	°C/W
Dower Dissinction D	SOT89	0.50	W
Power Dissipation, P _{D(MAX)}	8SOP-EP	0.80	W

Note: $P_{D(MAX)}$ is measured at $T_a = 25$ °C

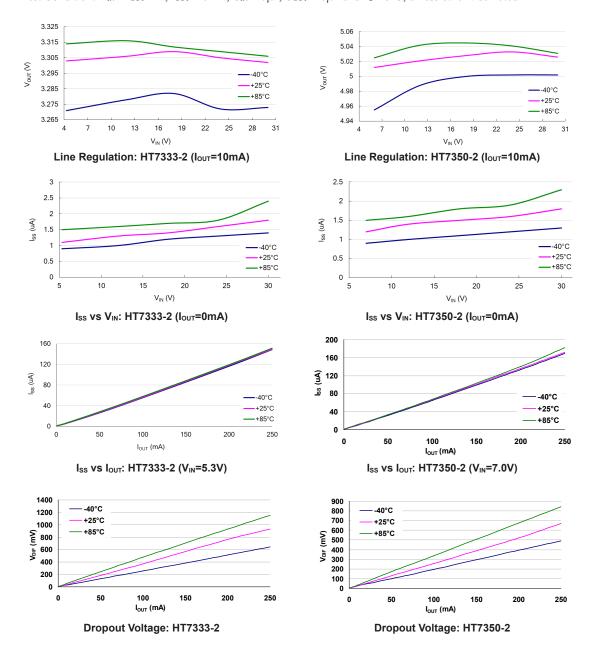
Recommended Operating Range

Parameter	Value	Unit
V _{IN}	V _{OUT} +2 to 30	V

Electrical Characteristics

 $V_{\text{IN}}\text{=}(V_{\text{OUT}}\text{+}2V),\,T_{a}\text{=}\text{+}25^{\circ}\text{C}$ and $C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}10\text{uF},$ unless otherwise specified

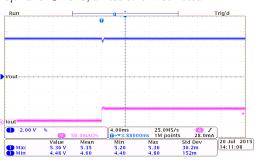
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	30	V
Vout	Output Voltage Range	_	2.1	_	5.0	V
Vo	Output Voltage Accuracy	I _{OUT} =10mA	-1	_	1	%
I _{OUT}	Output Current	_	250	_	_	mA
ΔV_{OUT}	Load Regulation	1mA ≤ I _{OUT} ≤ 100mA	_	45	90	mV
V	Dropout Voltage	I _{OUT} =1mA, V _{OUT} Change=2% (Note)	_	6	15	mV
V _{DIF}		I _{OUT} =30mA, V _{OUT} Change=2% (Note)	_	120	300	IIIV
Iss	Quiescent Current	I _{OUT} =0mA	_	2.5	4.0	uA
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	$(V_{OUT}+2V) \le V_{IN} \le 30V, I_{OUT}=40mA$	_	0.2	0.4	%/V
$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta} \times V_{\text{OUT}}}$	Temperature Coefficient	I _{оит} =40mA, -40°С < Т _а < 85°С	_	±100	_	ppm/°C
IOCP	Over Current Protection	V _{IN} =12V	_	350	700	mA

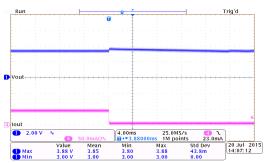

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+2V$ with a fixed load.

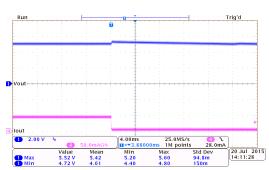
Rev. 1.20 3 December 11, 2018

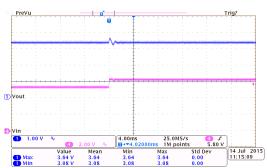
Typical Performance Characteristic

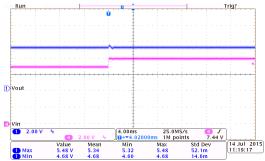

Test Condition: V_{IN}=V_{OUT}+2V, I_{OUT}=10mA, C_{IN}=10μF, C_{OUT}=10μF and T_a=25°C, unless otherwise noted


Rev. 1.20 4 December 11, 2018


Test Condition: $V_{IN}=V_{OUT}+2V$, $I_{OUT}=10mA$, $C_{IN}=10\mu F$, $C_{OUT}=10\mu F$ and $T_a=25^{\circ}C$, unless otherwise noted

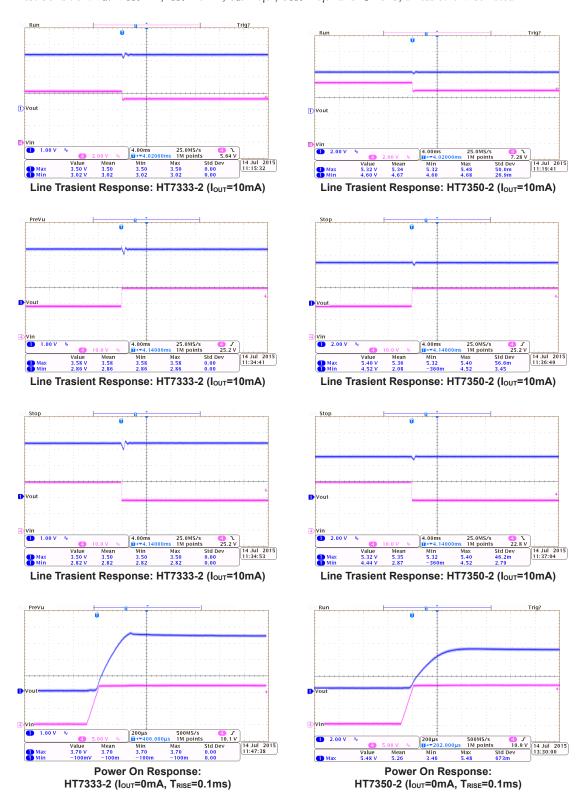

Load Transient Response: HT7333-2 (V_{IN} =5.3V, I_{OUT} =0mA to 40mA)


Load Transient Response: HT7350-2 (V_{IN} =7.0V, I_{OUT} =0mA to 40mA)


Load Transient Response: HT7333-2 (V_{IN}=5.3V, I_{OUT}=40mA to 0mA)

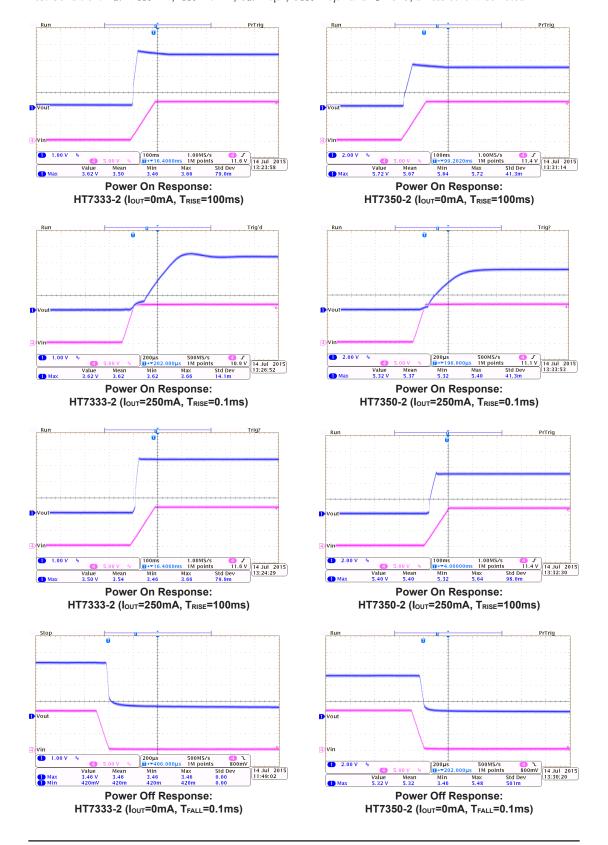
Load Transient Response: HT7350-2 (V_{IN} =7.0V, I_{OUT} =40mA to 0mA)

Line Trasient Response: HT7333-2 (I_{OUT}=10mA)

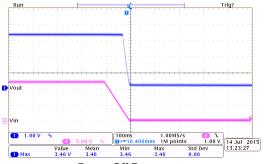


Line Trasient Response: HT7350-2 (I_{OUT}=10mA)

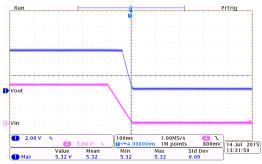
Rev. 1.20 5 December 11, 2018

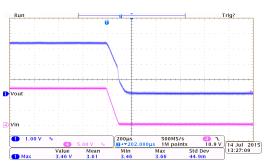


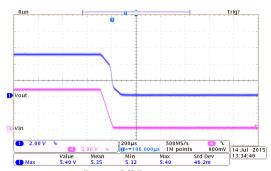
Test Condition: $V_{IN}=V_{OUT}+2V$, $I_{OUT}=10mA$, $C_{IN}=10\mu F$, $C_{OUT}=10\mu F$ and $T_a=25^{\circ}C$, unless otherwise noted

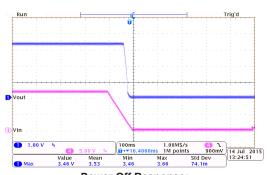


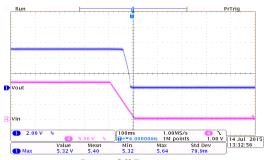
Test Condition: V_{IN}=V_{OUT}+2V, I_{OUT}=10mA, C_{IN}=10μF, C_{OUT}=10μF and T_a=25°C, unless otherwise noted




Test Condition: $V_{IN}=V_{OUT}+2V$, $I_{OUT}=10mA$, $C_{IN}=10\mu F$, $C_{OUT}=10\mu F$ and $T_a=25^{\circ}C$, unless otherwise noted


Power Off Response: HT7333-2 (I_{OUT}=0mA, T_{FALL}=100ms)


Power Off Response: HT7350-2 (I_{OUT}=0mA, T_{FALL}=100ms)


Power Off Response: HT7333-2 (I_{OUT}=250mA, T_{FALL}=0.1ms)

Power Off Response: HT7350-2 (I_{OUT}=250mA, T_{FALL}=0.1ms)

Power Off Response: HT7333-2 (I_{OUT}=250mA, T_{FALL}=100ms)

Power Off Response: HT7350-2 (I_{OUT}=250mA, T_{FALL}=100ms)

Rev. 1.20 8 December 11, 2018

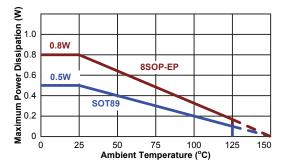
Application Information

The devices are a 3-terminal low dropout series linear voltage regulators. It is important the following application points are noted if correct operation is to be achieved.

External Circuit

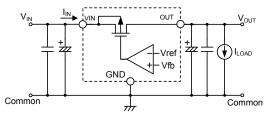
It is important that external capacitors are connected to both the input and output pins. For the input pin suitable bypass capacitors as shown in the application circuits should be connected especially in situations where a battery power source is used which may have a higher impedence. For the output pin, a suitable capacitor should also be connected especially in situations where the load is of a transient nature, in which case larger capacitor values should be selected to limit any output transient voltages.

Thermal Considerations


The maximum power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of the surrounding airflow and the difference between the junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_a) / \theta_{JA}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_a is the ambient temperature and θ_{JA} is the junction-to-ambient thermal resistance of the IC package in degrees per watt. The following table shows the θ_{JA} values for various package types.

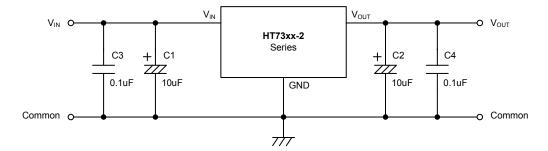

Package	θ _{JA} value °C/W
SOT89	200 °C/W
8SOP-EP	125 °C/W

For maximum operating rating conditions, the maximum junction temperature is 150°C. However, it is recommended that the maximum junction temperature does not exceed 125°C during normal operation to maintain an adequate margin for device reliability. The derating curves of different packages for maximum power dissipation are as follows:

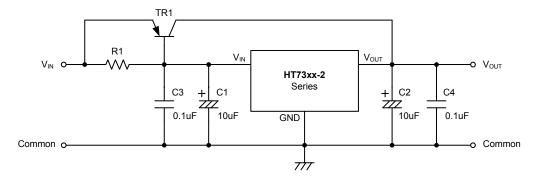
Power Dissipation Calculation

In order to keep the device within its operating limits and to maintain a regulated output voltage, the power dissipation of the device, given by P_D , must not exceed the Maximum Power Dissipation, given by $P_{D(MAX)}$. Therefore $P_D \leq P_{D(MAX)}$. From the diagram it can be seen that almost all of this power is generated across the pass transistor which is acting like a variable resistor in series with the load to keep the output voltage constant. This generated power which will appear as heat, must never allow the device to exceed its maximum junction temperature.

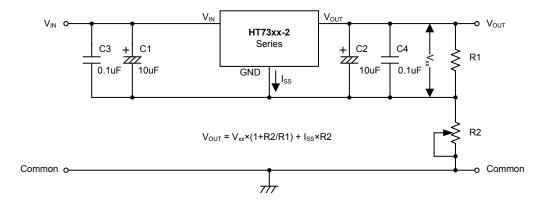
In practical applications the regulator may be called upon to provide both steady state and transient currents due to the transient nature of the load. Although the device may be working well within its limits with its steady state current, care must be taken with transient loads which may cause the current to rise close to its maximum current value. Care must be taken with transient loads and currents as this will result in device junction temperature rises which must not exceed the maximum junction temperature. With both steady state and transient currents, the important current to consider is the average or more precisely the RMS current which is the value of current that will appear as heat generated in the device. The following diagram shows how the average current relates to the transient currents.



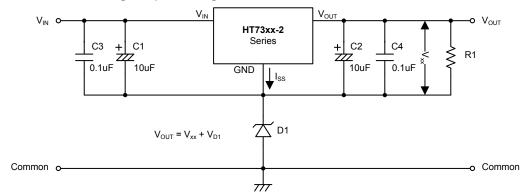
As the quiescent current of the device is very small it can generally be ignored and as a result the input current can be assumed to be equal to the output current. Therefore the power dissipation of the device, P_D , can be calculated as the voltage drop across the input and output multiplied by the current, given by the equation, $P_D = (V_{\rm IN} - V_{\rm OUT}) \times I_{\rm IN}. \text{ As the input current is also equal to the load current the power dissipation } P_D = (V_{\rm IN} - V_{\rm OUT}) \times I_{\rm LOAD}. \text{However, with transient load currents, } P_D = (V_{\rm IN} - V_{\rm OUT}) \times I_{\rm LOAD(AVG)} \text{ as shown in the figure.}$

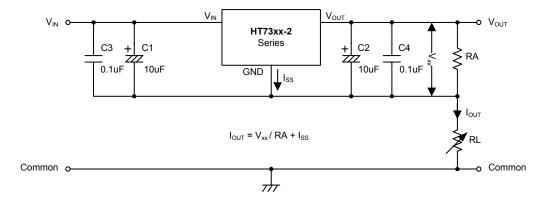


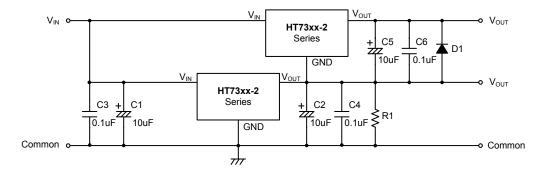
Application Circuits


Basic Circuits

High Output Current Positive Voltage Regulator


Circuit for Increasing Output Voltage


Rev. 1.20 December 11, 2018


Circuit for Increasing Output Voltage

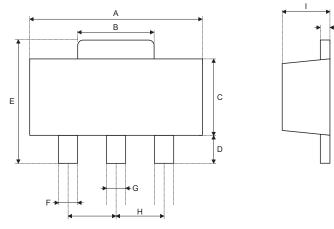
Constant Current Regulator

Dual Supply

Rev. 1.20 11 December 11, 2018

Package Information

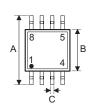
Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

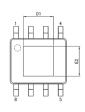

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

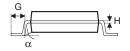
Rev. 1.20 12 December 11, 2018

3-pin SOT89 Outline Dimensions


Cumhal	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
А	0.173	_	0.185	
В	0.053	_	0.072	
С	0.090	_	0.106	
D	0.031	_	0.047	
E	0.155	_	0.173	
F	0.014	_	0.019	
G	0.017	_	0.022	
Н	_	0.059 BSC	_	
I	0.055	_	0.063	
J	0.014	_	0.017	


Symbol	Dimensions in mm			
Syllibol	Min.	Nom.	Max.	
A	4.40	_	4.70	
В	1.35	_	1.83	
С	2.29	_	2.70	
D	0.80	_	1.20	
Е	3.94	_	4.40	
F	0.36	_	0.48	
G	0.44	_	0.56	
Н	_	1.50 BSC	_	
I	1.40	_	1.60	
J	0.35	_	0.44	

Rev. 1.20 13 December 11, 2018



8-pin SOP-EP (150mil) Outline Dimensions

Comple at	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
А	_	0.236 BSC	_	
В	_	0.154 BSC	_	
С	0.012	_	0.020	
C,	_	0.193 BSC	_	
D	_	_	0.069	
D1	0.059	_	_	
E	_	0.050 BSC	_	
E2	0.039	_	_	
F	0.004	_	0.010	
G	0.016	_	0.050	
Н	0.004	_	0.010	
а	0°	_	8°	

Cymhal	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	_	6.00 BSC	_	
В	_	3.90 BSC	_	
С	0.31	_	0.51	
C,	_	4.90 BSC	_	
D	_	_	1.75	
D1	1.50	_	_	
E	_	1.27 BSC	_	
E2	1.00	_	_	
F	0.10	_	0.25	
G	0.40	_	1.27	
Н	0.10	_	0.25	
а	0°	_	8°	

Rev. 1.20 14 December 11, 2018

Copyright[©] 2018 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.

Rev. 1.20 December 11, 2018