

HT32F61741 Datasheet

32-Bit Arm[®] Cortex[®]-M0+ BMS Microcontroller, 64 KB Flash and 8 KB SRAM with Individual Cell Voltage Monitor, 1 Msps ADC, DIV, USART, UART, SPI, I²C, MCTM, GPTM, BFTM, PWM, CRC, RTC and WDT

Revision: V1.00 Date: April 23, 2024

www.holtek.com

Table of Contents

1	General Description	6
2	Features	7
	Core	7
	On-Chip Memory	
	Flash Memory Controller – FMC	
	Reset Control Unit – RSTCU	
	Clock Control Unit – CKCU	8
	Power Management Control Unit – PWRCU	8
	Real-Time Clock – RTC	
	External Interrupt/Event Controller – EXTI	8
	Hardware Divider – DIV	
	Analog to Digital Converter – ADC	9
	I/O Ports – GPIO	9
	Basic Function Timer – BFTM	9
	Motor Control Timer – MCTM	10
	General-Purpose Timer – GPTM	10
	Pulse-Width-Modulation Timer – PWM	10
	Watchdog Timer – WDT	11
	Inter-integrated Circuit – I ² C	11
	Serial Peripheral Interface – SPI	11
	Universal Synchronous Asynchronous Receiver Transmitter – USART	12
	Universal Asynchronous Receiver Transmitter – UART	
	Cyclic Redundancy Check – CRC	
	Individual Cell Voltage Monitor	
	Debug Support	
	Package and Operation Temperature	13
3	Overview	14
	Device Information	14
	Block Diagram	15
	Memory Map	16
	Clock Structure	
4	Individual Cell Voltage Monitor	
	I ² C Serial Interface	
	Individual Cell Voltage Monitor I ² C Register Map	
	Cell Voltage Monitor	
	Cell Balance	33

	Current Monitor	31
	Short-current Detection	
	Sleep Mode	
	Wake up from Sleep Mode	
	Discharge Path, i.e., Low-side Power Switch Gate Driver	
	Charge Path, i.e., High-side Power Switch Gate Driver	
	Over-temperature Detection	
	VIN, VREG Capacitors	
	VIN LDO Filter Recommendation	
	VBAT1 ~ VBAT8 Protection and Balance Resistor Selection	
	Increase Charging Balance Current	
	Charger and Switch Status Detection	
	Voltage Spike Suppression Method	
	Thermal Considerations	
	Heimai Considerations	.42
5	Pin Assignment	. 44
	Interconnection Signal Description	. 49
6	Electrical Characteristics	
	Absolute Maximum Ratings	50
	Recommended DC Operating Conditions	
		. 50
	Recommended DC Operating Conditions	. 50 . 50 . 51
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption	.50 .50 .51
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics	. 50 . 50 . 51 . 51 . 52
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics	. 50 . 50 . 51 . 51 . 52 . 53
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics	. 50 . 50 . 51 . 51 . 52 . 53
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics	. 50 . 50 . 51 . 51 . 52 . 53 . 54
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics	. 50 . 50 . 51 . 51 . 52 . 53 . 54
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics Memory Characteristics	. 50 . 51 . 51 . 52 . 53 . 54 . 54
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics Memory Characteristics I/O Port Characteristics	. 50 . 51 . 51 . 52 . 53 . 54 . 54 . 55 . 56
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics Memory Characteristics I/O Port Characteristics ADC Characteristics	. 50 . 50 . 51 . 51 . 52 . 53 . 54 . 54 . 55 . 56 . 57
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics Memory Characteristics I/O Port Characteristics ADC Characteristics MCTM/GPTM/PWM Characteristics Individual Cell Voltage Monitor Electrical Characteristics Individual Cell Voltage Monitor I ² C Interface Characteristics	.50 .51 .51 .52 .53 .54 .55 .55 .56 .57
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics Memory Characteristics I/O Port Characteristics ADC Characteristics MCTM/GPTM/PWM Characteristics Individual Cell Voltage Monitor Electrical Characteristics	.50 .51 .51 .52 .53 .54 .55 .55 .56 .57
	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics Memory Characteristics I/O Port Characteristics ADC Characteristics MCTM/GPTM/PWM Characteristics Individual Cell Voltage Monitor Electrical Characteristics Individual Cell Voltage Monitor I ² C Interface Characteristics	. 50 . 50 . 51 . 51 . 52 . 53 . 54 . 55 . 56 . 57 . 62 . 63
7	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics Power Consumption Reset and Supply Monitor Characteristics External Clock Characteristics Internal Clock Characteristics Memory Characteristics I/O Port Characteristics ADC Characteristics MCTM/GPTM/PWM Characteristics Individual Cell Voltage Monitor Electrical Characteristics Individual Cell Voltage Monitor I ² C Interface Characteristic I ² C Characteristics SPI Characteristics	. 50 . 50 . 51 . 52 . 53 . 54 . 55 . 56 . 57 . 62 . 63 . 64
7	Recommended DC Operating Conditions Recommended Operating Ratings On-Chip LDO Voltage Regulator Characteristics. Power Consumption Reset and Supply Monitor Characteristics. External Clock Characteristics Internal Clock Characteristics Memory Characteristics I/O Port Characteristics ADC Characteristics MCTM/GPTM/PWM Characteristics Individual Cell Voltage Monitor Electrical Characteristics Individual Cell Voltage Monitor I ² C Interface Characteristic. I ² C Characteristics	. 50 . 51 . 51 . 52 . 53 . 54 . 55 . 56 . 57 . 62 . 63 . 64

List of Tables

Table 1. Features and Peripheral List	14
Table 2. Register Map	17
Table 3. Individual Cell Voltage Monitor I ² C Register Map	25
Table 4. Cell Voltage Monitor Truth Table	32
Table 5. Cell Balance Switch Truth Table	34
Table 6. Sleep Mode Status Truth Table	35
Table 7. DGN0 Control Logic and Output Status in Different Operating Modes	36
Table 8. DGN1 Control Logic and Output Status in Different Operating Modes	37
Table 9. DCN Control Logic and DGCN Output Status	37
Table 10. R9 Recommended Values for Different Cell Numbers	38
Table 11. R0 ~ R8 Recommended Values for Different Balance Current	39
Table 12. Pin Assignment	45
Table 13. Pin Description	47
Table 14. Internal Connection Signal Lines	49
Table 15. Absolute Maximum Ratings	50
Table 16. Recommended DC Operating Conditions	50
Table 17. Recommended Operating Ratings	50
Table 18. LDO Characteristics	51
Table 19. Power Consumption Characteristics	51
Table 20. V _{DD} Power Reset Characteristics	52
Table 21. LVD/BOD Characteristics	52
Table 22. High Speed External Clock (HSE) Characteristics	53
Table 23. Low Speed External Clock (LSE) Characteristics	53
Table 24. High Speed Internal Clock (HSI) Characteristics	54
Table 25. Low Speed Internal Clock (LSI) Characteristics	54
Table 26. Flash Memory Characteristics	54
Table 27. I/O Port Characteristics	55
Table 28. ADC Characteristics	56
Table 29. MCTM/GPTM/PWM Characteristics	57
Table 30. Individual Cell Voltage Monitor Electrical Characteristics	57
Table 31. Individual Cell Voltage Monitor Electrical Characteristics (ISP-ISN Shunt Resist	tor = 5 m Ω) 60
Table 32. Individual Cell Voltage Monitor I ² C Interface Characteristic	62
Table 33. I ² C Characteristics	63
Table 34. SPI Characteristics	64

List of Figures

3	
Figure 1. Block Diagram	15
Figure 2. Memory Map	16
Figure 3. Clock Structure	19
Figure 4. Individual Cell Voltage Monitor Block Diagram	21
Figure 5. Data Validity	22
Figure 6. START and STOP	22
Figure 7. Byte Format	23
Figure 8. Acknowledge	23
Figure 9. Slave Address	24
Figure 10. Write Operation	24
Figure 11. Read Sequence	25
Figure 12. Cell Balance Application Schematic Diagram	33
Figure 13. Current Monitor Schematic Diagram	34
Figure 14. Sleep Mode Wake-up Sequence	36
Figure 15. Input / output Capacitor Configuration	37
Figure 16. VIN R9 Configuration	38
Figure 17. VBAT1 ~ VBAT8 Protection and Balance Resisto	ors39
Figure 18. Balanced Current VS Balanced Voltage	39
Figure 19. External Balanced Application Circuit	40
Figure 20. Alance Current VS V _{B1}	
Figure 21. Charger and Switch Status Detection	41
Figure 22. Simplified Typical BMS System Discharge Path	Diagram42
Figure 23. Derating Curve	43
Figure 24. 64-pin LQFP-EP Pin Assignment	44
Figure 25. ADC Sampling Network Model	56
Figure 26. Individual Cell Voltage Monitor Characteristics	60
Figure 27. Individual Cell Voltage Monitor I ² C Timing Diagra	am 62
Figure 28. I ² C Timing Diagrams	63
Figure 29. SPI Timing Diagrams – SPI Master Mode	65
Figure 30. SPI Timing Diagrams – SPI Slave Mode with CP	'HA=165

1 General Description

The Holtek HT32F61741 device is a high performance, low power consumption 32-bit microcontroller based around an Arm[®] Cortex[®]-M0+ processor core. The Cortex[®]-M0+ is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer, and including advanced debug support.

The device operates at a frequency of up to 20 MHz. It provides 64 KB of embedded Flash memory for code/data storage and 8 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as Hardware Divider DIV, ADC, I²C, USART, UART, SPI, MCTM, GPTM, PWM, BFTM, CRC-16/32, RTC, WDT, SW-DP (Serial Wire Debug Port), etc., are also implemented in the device. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The device also has an individual cell voltage monitor module, a high accuracy voltage regulator, two discharge N-type MOSFET gate drivers and a charge N-type MOSFET gate driver, which is suitable for 3 to 8 rechargeable lithium batteries. The cell voltage monitor is designed to monitor each battery cell voltage individually and outputs the divide-by-2 voltage to the analog multiplexer with ± 7.5 mV accuracy when analog output is 2.1 V. After being selected by an analog multiplexer, the output voltage is directly connected to the internal A/D converter for measurement. The integrated high accuracy V_{REFO} is 2.5 V (maximum drift ± 15 mV). The internal gate drivers can directly drive external power N-type MOSFETs to control charge and discharge. It also has functions of differential amplifier to detect charge/discharge current, hardware discharge short-current protection and overtemperature protection and so on. The integrated battery balance circuitry provides a cell balance current without the need of external transistors.

The above features ensure that the device is suitable for use in a wide range of applications, especially in areas such as handheld measurement instruments, electric power tools, handheld hair dryers, handheld vacuum cleaners in addition to many others.

Rev. 1.00 6 of 68 April 23, 2024

2 Features

Core

- 32-bit Arm[®] Cortex[®]-M0+ processor core
- Up to 20 MHz operating frequency
- Single-cycle multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M0+ processor is a very low gate count, highly energy efficient processor that is intended for microcontroller and deeply embedded applications that require an area optimized, low-power processor. The processor is based on the ARMv6-M architecture and supports Thumb® instruction sets, single-cycle I/O ports, hardware multiplier and low latency interrupt respond time.

On-Chip Memory

- 64 KB on-chip Flash memory for instruction/data and option byte storage
- 8 KB on-chip SRAM
- Supports multiple boot modes

The Arm® Cortex®-M0+ processor accesses and debug access share the single external interface to external AHB peripherals. The processor access takes priority over debug access. The maximum address range of the Cortex®-M0+ is 4 GB since it has a 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex®-M0+ processor to reduce the software complexity of repeated implementation by different device vendors. However, some regions are used by the Arm® Cortex®-M0+ system peripherals. Refer to the Arm® Cortex®-M0+ Technical Reference Manual for more information. Figure 2 in the Overview chapter shows the memory map of the device, including code, SRAM, peripheral and other pre-defined regions.

Flash Memory Controller - FMC

- 32-bit word programming with In System Programming (ISP) and In Application Programming (IAP)
- Flash protection capability to prevent illegal access

The Flash Memory Controller, FMC, provides all the necessary functions for the embedded on-chip Flash Memory. The word program/page erase functions are also provided.

Reset Control Unit - RSTCU

- Supply supervisor
 - Power on Reset / Power down Reset POR / PDR
 - Brown-out Detector BOD
 - Programmable Low Voltage Detector LVD

The Reset Control Unit, RSTCU, has three kinds of reset, a power on reset, a system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller. The resets can be triggered by external signals, internal events and the reset generators.

Clock Control Unit - CKCU

- External 4 to 20 MHz crystal oscillator
- External 32.768 kHz crystal oscillator
- Internal 20 MHz RC oscillator trimmed to ±2 % accuracy at 25 °C operating temperature
- Internal 32 kHz RC oscillator
- Independent clock divider and gating bits for peripheral clock sources

The Clock Control Unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), an HSE clock monitor, clock pre-scalers, clock multiplexers, APB clock divider and gating circuitry. The AHB, APB and Cortex®-M0+ clocks are derived from the system clock (CK_SYS) which can come from the HSI, HSE, LSI or LSE. The Watchdog Timer and Real-Time Clock (RTC) use either the LSI or LSE as their clock source.

Power Management Control Unit - PWRCU

- Flexible power supply: V_{DD} power supply (2.5 V ~ 5.5 V), V_{DDIO} for I/Os (1.8 V ~ 5.5 V)
- Integrated 1.5 V LDO regulator for MCU core, peripherals and memories power supply
- V_{DD}, V_{DDIO} and V_{CORE} power domains
- Three power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2

Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in these devices provides many types of power saving modes such as Sleep, Deep-Sleep1 and Deep-Sleep2 modes. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption.

Real-Time Clock - RTC

- 24-bit up-counter with a programmable prescaler
- Alarm function
- Interrupt and Wake-up event

The Real-Time Clock, RTC, includes an APB interface, a 24-bit count-up counter, a control register, a prescaler, a compare register and a status register. The RTC circuits are located in the V_{CORE} power domain. When the device enters the power-saving mode, the RTC counter is used as a wakeup timer to let the system resume from the power saving mode.

External Interrupt/Event Controller – EXTI

- Up to 16 EXTI lines with configurable trigger source and type
- All GPIO pins can be selected as EXTI trigger source
- Source trigger type includes high level, low level, negative edge, positive edge or both edges
- Individual interrupt enable, wakeup enable and status bits for each EXTI line
- Software interrupt trigger mode for each EXTI line
- Integrated deglitch filter for short pulse blocking

The External Interrupt/Event Controller, EXTI, comprises 16 edge detectors which can generate a wake-up event or interrupt requests independently. Each EXTI line can also be masked independently.

Hardware Divider - DIV

- Signed/unsigned 32-bit divider
- Operation in 8 clock cycles, load in 1 clock cycle
- Divide by zero error Flag

The divider is the truncated division and needs a software triggered start signal by using the control register "START" bit. After 8 clock cycles, the divider calculate complete flag will be set to 1, and if the divisor register data is zero, the divide by zero error flag will be set to 1.

Analog to Digital Converter – ADC

- 12-bit SAR ADC engine
- Up to 1 Msps conversion rate
- Up to 7 external analog input channels

A 12-bit multi-channel Analog to Digital Converter is integrated in these devices. There are multiplexed channels, which include 7 external analog signal channels and 2 internal channels which can be measured. If the input voltage is required to remain within a specific threshold window, an Analog Watchdog function will monitor and detect these signals. An interrupt will then be generated to inform the device that the input voltage is not within the preset thresholds. There are three conversion modes to convert an analog signal to digital data. The ADC can be operated in one shot, continuous and discontinuous conversion modes.

I/O Ports - GPIO

- Up to 23 GPIOs
- Port A, B, C are mapped as 16 external interrupts EXTI
- Almost all I/O pins have configurable output driving current

There are up to 23 General Purpose I/O pins, GPIO, for the implementation of logic input/output functions. Each of the GPIO ports has a series of related control and configuration registers to maximize flexibility and to meet the requirements of a wide range of applications.

The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI.

Basic Function Timer – BFTM

- 32-bit compare match count-up counter no I/O control
- One shot mode counter stops counting when compare match occurs
- Repetitive mode counter restarts when compare match occurs

The Basic Function Timer Module, BFTM, is a simple 32-bit up-counting counter designed to measure time intervals and generate a one shot or repetitive interrupts. The BFTM can operate in two modes, repetitive and one shot modes. In the repetitive mode, the counter will restart at each compare match event. The BFTM also supports a one shot mode which will force the counter to stop counting when a compare match event occurs.

Motor Control Timer – MCTM

- 16-bit up, down, up/down auto-reload counter
- Up to 4 independent channels
- 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Input Capture function
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting
- Single Pulse Mode Output
- Complementary Outputs with programmable dead-time insertion
- Break input to force the timer's output signals into a reset or fixed condition

The Motor Control Timer Module, MCTM, consists of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter Reload Register (CRR), one 8-bit repetition counter and several control/status registers. It can be used for a variety of purposes including measuring the pulse width of input signals or generating output waveforms such as compare match outputs, PWM outputs or complementary PWM outputs with dead-time insertion. The MCTM is capable of offering full functional support for motor control, hall sensor interfacing and break input.

General-Purpose Timer – GPTM

- 16-bit up, down, up/down auto-reload counter
- Up to 4 independent channels
- 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Input Capture function
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting
- Single Pulse Mode Output
- Encoder interface controller with two inputs using quadrature decoder

The General Purpose Timer Module, GPTM, consists of one 16-bit up/down-counter, four 16-bit Capture / Compare Registers (CCRs), one 16-bit Counter Reload Register (CRR) and several control / status registers. It can be used for a variety of purposes including general time measurement, input signal pulse width measurement, output waveform generation such as single pulse generation or PWM output generation. The GPTM supports an Encoder Interface using a quadrature decoder with two inputs.

Pulse-Width-Modulation Timer – PWM

- 16-bit up, down, up/down auto-reload counter
- Up to 4 independent channels for each timer
- 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting
- Single Pulse Mode Output

The Pulse-Width-Modulation Timer, PWM, consists of one 16-bit up/down-counter, four 16-bit Compare Registers (CRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. It can be used for a variety of purposes including general timer and output waveform generation such as single pulse generation or PWM output.

Watchdog Timer - WDT

- 12-bit down counter with 3-bit prescaler
- Provides reset to the system
- Programmable watchdog timer window function
- Register write protection function

The Watchdog Timer is a hardware timing circuit that can be used to detect a system lock-up due to software trapped in a deadlock. It includes a 12-bit count-down counter, a prescaler, a WDT delta value register, WDT operation control circuitry and a WDT protection mechanism. If the software does not reload the counter value before a Watchdog Timer underflow occurs, a reset will be generated when the counter underflows. In addition, a reset is also generated if the software reloads the counter when it reaches a delta value. It means that the counter reload must occur when the Watchdog timer value has a value within a limited window using a specific method. The Watchdog Timer counter can be stopped while the processor is in the debug mode. The register write protect function which can be enabled to prevent an unexpected change in the Watchdog timer configuration.

Inter-integrated Circuit – I²C

- Supports both master and slave modes with a frequency of up to 1 MHz
- Provides an arbitration function and clock synchronization
- Supports 7-bit and 10-bit addressing modes and general call addressing
- Supports slave multi-addressing mode with address mask function

The I²C is an internal circuit allowing communication with an external I²C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I²C module provides three data transfer rates: 100 kHz in the Standard mode, 400 kHz in the Fast mode and 1 MHz in the Fast plus mode. The SCL period generation register is used to setup different kinds of duty cycle implementations for the SCL pulse.

The SDA line which is connected directly to the I²C bus is a bi-directional data line between the master and slave devices and is used for data transmission and reception. The I²C also has an arbitration detect function and clock synchronization to prevent situations where more than one master attempts to transmit data to the I²C bus at the same time.

Serial Peripheral Interface – SPI

- Supports both master and slave modes
- Frequency of up to $(f_{PCLK}/2)$ MHz for the master mode and $(f_{PCLK}/3)$ MHz for the slave mode
- FIFO Depth: 8 levels
- Multi-master and multi-slave operation

The Serial Peripheral Interface, SPI, provides a SPI protocol data transmit and receive function in both master and slave modes. The SPI interface uses 4 pins, which are the serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried out in a similar way but in a reverse sequence. The mode fault detection provides a capability for multi-master applications.

Universal Synchronous Asynchronous Receiver Transmitter - USART

- Supports both asynchronous and clocked synchronous serial communication modes
- Programmable baud rate clock frequency up to $(f_{PCLK}/16)$ MHz for Asynchronous mode and $(f_{PCLK}/8)$ MHz for synchronous mode
- Full duplex communication
- Fully programmable serial communication characteristics including
 - Word length: 7, 8 or 9-bit character
 - Parity: Even, odd or no-parity bit generation and detection
 - Stop bit: 1 or 2 stop bits generation
 - Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun and frame error
- Auto hardware flow control mode RTS, CTS
- IrDA SIR encoder and decoder
- RS485 mode with output enable control
- FIFO Depth: 8-level for both receiver and transmitter

The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The USART peripheral function supports four types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt and Time Out Interrupt. The USART module includes a transmitter FIFO (TX_FIFO) and receiver FIFO (RX_FIFO). The software can detect a USART error status by reading the USART Status & Interrupt Flag Register, USRSIFR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

Universal Asynchronous Receiver Transmitter – UART

- Asynchronous serial communication operating baud-rate clock frequency up to (f_{PCLK}/16) MHz
- Full duplex communication
- Fully programmable serial communication characteristics including
 - Word length: 7, 8 or 9-bit character
 - Parity: Even, odd or no-parity bit generation and detection
 - Stop bit: 1 or 2 stop bits generation
 - Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun and frame error

The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The UART peripheral function supports Line Status Interrupt. The software can detect a UART error status by reading the UART Status & Interrupt Flag Register, URSIFR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

Cyclic Redundancy Check - CRC

- Supports CRC16 polynomial: 0x8005, $X^{16}+X^{15}+X^2+1$
- Supports CCITT CRC16 polynomial: 0x1021, X¹⁶+X¹²+X⁵+1
- Supports IEEE-802.3 CRC32 polynomial: 0x04C11DB7, X³²+X²⁶+X²³+X²²+X¹⁶+X¹²+X¹¹+X¹⁰+X⁸+X⁷+X⁵+X⁴+X²+X+1
- Supports 1's complement, byte reverse & bit reverse operation on data and checksum
- Supports byte, half-word & word data size
- Programmable CRC initial seed value
- CRC computation executed in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32-bit data

The CRC calculation unit is an error detection technique test algorithm which is used to verify data transmission or storage data correctness. A CRC calculation takes a data stream or a block of data as its input and generates a 16-bit or 32-bit output remainder. Ordinarily, a data stream is suffixed by a CRC code and used as a checksum when being sent or stored. Therefore, the received or restored data stream is calculated by the same generator polynomial as described above. If the new CRC code result does not match the one calculated earlier, that means the data stream contains a data error.

Individual Cell Voltage Monitor

- Integrated voltage regulator with 5 V / 50 mA and ± 1 % accuracy
- Individual cell voltage monitor outputs 1/2 of battery cell voltage, when the analog output is 2.1 V, it has an accuracy of $\pm 7.5 \text{ mV}$
- At T_A = -40 °C ~ 85 °C, 2.5 V reference voltage output with a maximum variation of 15 mV in temperature drift
- Internal cell charging balance switches
- Two Discharge N-type MOSFET gate drivers
- Single Charge N-type MOSFET gate driver
- Charge/Discharge differential OPA current monitor
 - IMON outputs amplified ISP-ISN differential voltage
 - Voltage amplifying rate selection: 10/50
- Discharge short-current detection
 - \bullet Detection threshold voltage selection: 50 mV / 100 mV / 150 mV / 200 mV / 250 mV / 300 mV / 350 mV / 400 mV
 - Detection debounce time selection: $0 \mu s \sim 99 2\mu s$, 32 sections, $32 \mu s$ per section
- Integrated Over-temperature protection selection: 85 °C / 100 °C / 125 °C / 150 °C
- Sleep mode with 0.1 μA ultra-low standby current
- Two High-voltage wake-up functions

Debug Support

- Serial Wire Debug Port SW-DP
- 4 comparators for hardware breakpoint or code / literal patch
- 2 comparators for hardware watch points

Package and Operation Temperature

- 64-pin LQFP-EP package
- Operation temperature range: -40 °C to 85 °C

3 Overview

Device Information

Table 1. Features and Peripheral List

Peripherals		HT32F61741			
Main Flash (KB)		63			
Option Bytes Flash (KB)		1			
SRAM (KB)		8			
	MCTM	1			
	GPTM	1			
Timers	PWM	2			
Timers	BFTM	2			
	WDT	1			
	RTC	1			
	SPI	2			
Communication	USART	1			
Communication	UART	1			
	I ² C	2			
Hardware Divider		1			
CRC-16/32		1			
EXTI		16			
12-bit ADC		1			
Number of channels		7 External Channels			
Individual Cell Voltage Monito	r	1			
GPIO		Up to 23			
CPU frequency		Up to 20 MHz			
Operating voltage		2.5 V ~ 5.5 V			
Operating temperature		-40 °C ~ 85 °C			
Package		64-pin LQFP-EP			

Note: The functions listed here, except the Individual Cell Voltage Monitor, are compatible with the HT32F50241 device. Refer to the HT32F50231/HT32F50241 user manual for detailed functional description.

Block Diagram

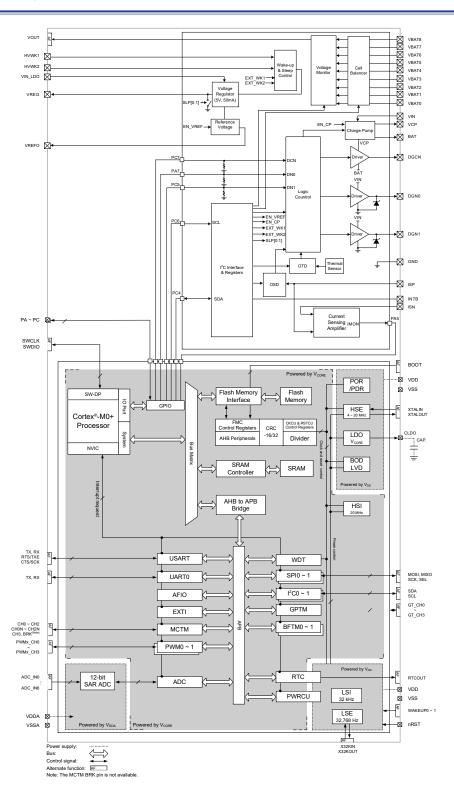


Figure 1. Block Diagram

Memory Map

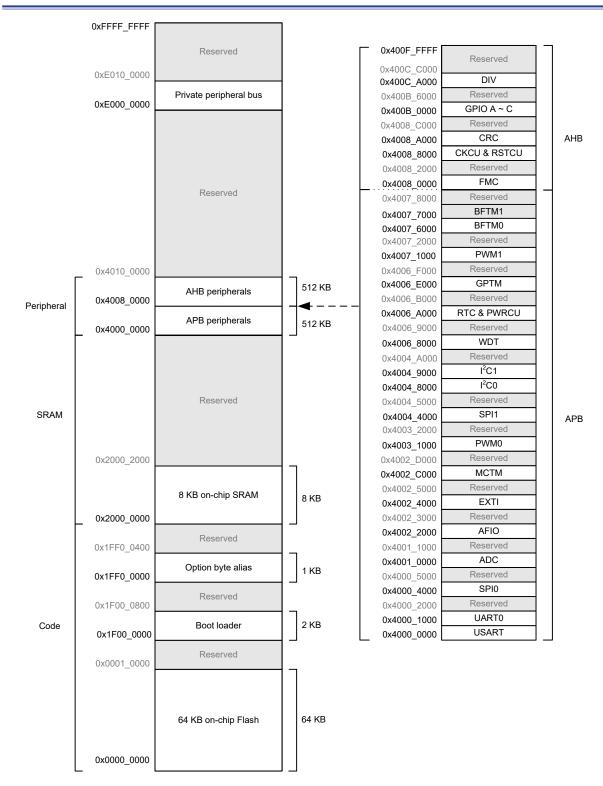


Figure 2. Memory Map

Table 2. Register Map

	•		
Start Address	End Address	Peripheral	Bus
0x4000_0000	0x4000_0FFF	USART	
0x4000_1000	0x4000_1FFF	UART0	
0x4000_2000	0x4000_3FFF	Reserved	
0x4000_4000	0x4000_4FFF	SPI0	
0x4000_5000	0x4000_FFFF	Reserved	
0x4001_0000	0x4001_0FFF	ADC	
0x4001_1000	0x4002_1FFF	Reserved	
0x4002_2000	0x4002_2FFF	AFIO	
0x4002_3000	0x4002_3FFF	Reserved	
0x4002_4000	0x4002_4FFF	EXTI	
0x4002_5000	0x4002_BFFF	Reserved	
0x4002_C000	0x4002_CFFF	MCTM	
0x4002_D000	0x4003_0FFF	Reserved	
0x4003_1000	0x4003_1FFF	PWM0	
0x4003_2000	0x4004_3FFF	Reserved	
0x4004_4000	0x4004_4FFF	SPI1	APB
0x4004_5000	0x4004_7FFF	Reserved	
0x4004_8000	0x4004_8FFF	I ² C0	
0x4004_9000	0x4004_9FFF	I ² C1	
0x4004_A000	0x4006_7FFF	Reserved	
0x4006_8000	0x4006_8FFF	WDT	
0x4006_9000	0x4006_9FFF	Reserved	
0x4006_A000	0x4006_AFFF	RTC & PWRCU	
0x4006_B000	0x4006_DFFF	Reserved	
0x4006_E000	0x4006_EFFF	GPTM	
0x4006_F000	0x4007_0FFF	Reserved	
0x4007_1000	0x4007_1FFF	PWM1	
0x4007_2000	0x4007_5FFF	Reserved	
0x4007_6000	0x4007_6FFF	BFTM0	
0x4007_7000	0x4007_7FFF	BFTM1	
0x4007_8000	0x4007_FFFF	Reserved	
	•	•	

Start Address	End Address	Peripheral	Bus
0x4008_0000	0x4008_1FFF	FMC	
0x4008_2000	0x4008_7FFF	Reserved	
0x4008_8000	0x4008_9FFF	CKCU & RSTCU	
0x4008_A000	0x4008_BFFF	CRC	
0x4008_C000	0x400A_FFFF	Reserved	
0x400B_0000	0x400B_1FFF	GPIO A	AHB
0x400B_2000	0x400B_3FFF	GPIO B	
0x400B_4000	0x400B_5FFF	GPIO C	
0x400B_6000	0x400C_9FFF	Reserved	
0x400C_A000	0x400C_BFFF	DIV	
0x400C_C000	0x400F_FFFF	Reserved	

Clock Structure

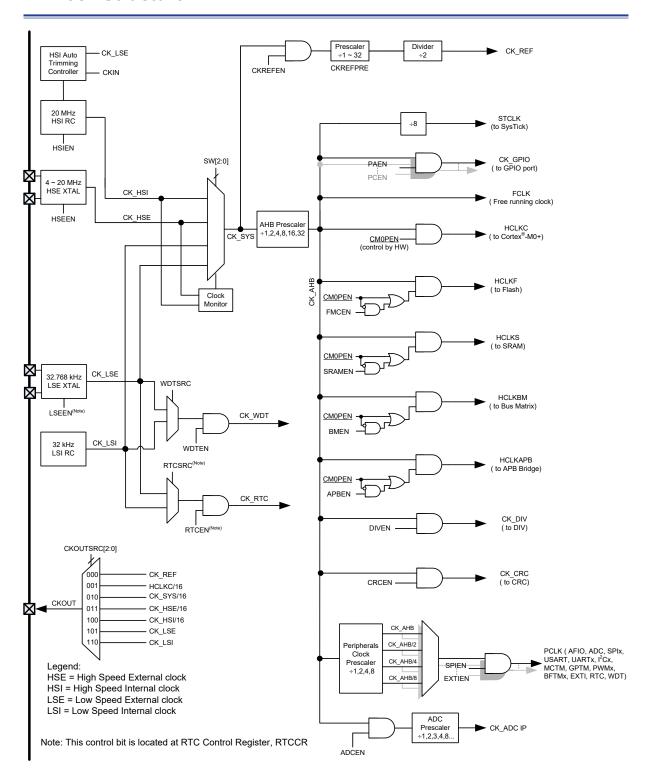


Figure 3. Clock Structure

Individual Cell Voltage Monitor

The cell voltage monitor is designed to monitor each battery cell voltage individually and outputs the divide-by-2 voltage to the analog multiplexer. When the analog output is 2.1 V, it has an accuracy of ± 7.5 mV. When the analog output is 4.2 V, it has an accuracy of ± 15 mV. Each monitor cell voltage from pin VBAT1 \sim VBAT8 can be observed sequentially and measured by using the internal A/D converter, which is only required to internal connect the VOUT pin to the A/D converter channels. The device has a 2.5 V reference voltage output, V_{REFO} , which provides the reference voltage V_{REF} for the A/D converter.

The current monitor channel provide charge and discharge current monitoring and short-current protection. The device can directly drive external N-type MOSFETs to control charge and discharge by charge and discharge gate drivers. The internal battery balance circuitry provides a cell balance current without the need of external transistors.

An integrated 5 V regulator provides a 5 V supply to the device with a 50 mA driving current capability and which has ± 1 % accuracy. The voltage regulator, cell voltage monitor, current monitors, and gate drivers are shut down with an ultra-low standby current 0.1 μ A when the monitor is in the Sleep mode. When the HVWK1 or HVWK2 pin is triggered by a voltage greater than its threshold, the device will return to the normal operating status.

Rev. 1.00 20 of 68 April 23, 2024

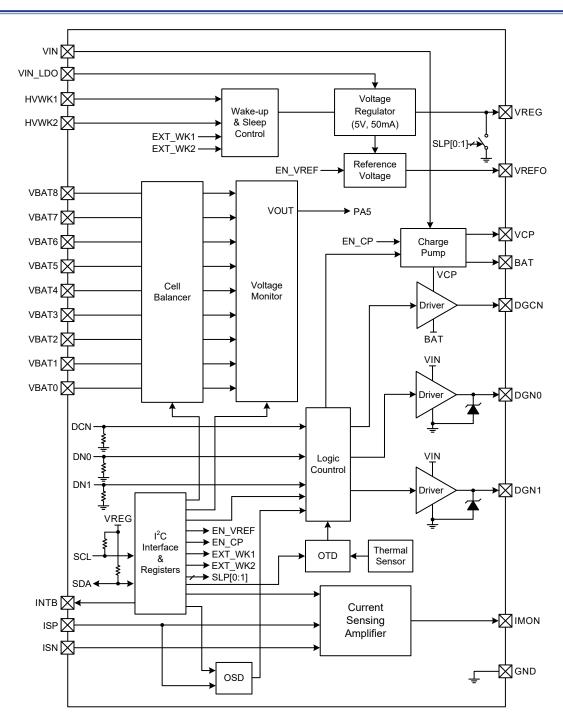


Figure 4. Individual Cell Voltage Monitor Block Diagram

I²C Serial Interface

The Individual Cell Voltage Monitor supports I²C serial interface. The I²C bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines are open-drain structure and two pull-high resistors are required. When the bus is free, both lines are high. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the Wired-AND function. Data transfer is initiated only when the bus is not busy.

Data Validity

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low.

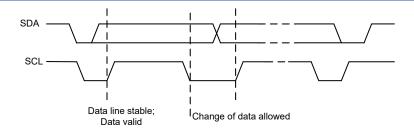


Figure 5. Data Validity

START and STOP

- (1) A high to low signal transition on the SDA data line while SCL is high defines a START (S)
- (2) A low to high signal transition on the SDA data line while SCL is high defines a STOP (P)
- (3) START and STOP are always generated by the master. The bus is considered to be busy after the START. The bus is considered to be free again a certain time after the STOP.
- (4) The bus stays busy if a REPEATED START (Sr) is generated instead of a STOP. In the respect, the START and REPEATED START are functionally identical.

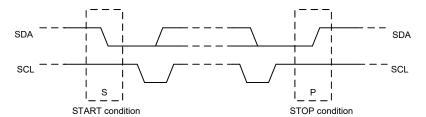


Figure 6. START and STOP

Byte Format

Every byte put on the SDA data line signal must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

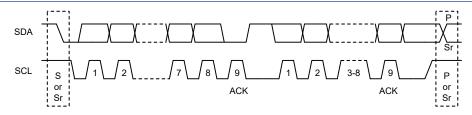


Figure 7. Byte Format

Acknowledge

- (1) Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, the master generates an extra acknowledge related clock pulse.
- (2) A slave receiver which is addressed must generate an Acknowledge response signal after the reception of each byte.
- (3) The device that provides an acknowledge must pull down the SDA data line signal during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse.
- (4) A master receiver must signal an end of data to the slave by generating a NOT Acknowledge response signal on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9th pulse to not acknowledge. The master will generate a STOP or Repeated START.

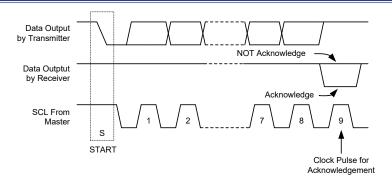


Figure 8. Acknowledge

I²C Time-out Control

In order to reduce the I^2C lockup problem due to reception of erroneous clock sources, a time-out function is provided. The I^2C time-out function starts timing for the specified I^2C time-out period (t_{OUT}) when receiving START (S) from I^2C bus. The timer is reset by every falling edge of SCL data line signal and gets interrupted when receiving STOP (P). If the next falling edge of SCL data line signal or STOP (P) does not appear throughout the I^2C time-out period (t_{OUT}) , SDA and SCL data line signals are set to default states at the end of timing and meanwhile the registers remains unchanged. The I^2C time-out is set to 32 ms by default.

Slave Address

- (1) The slave address byte is the first byte received following the START condition from the master device. The first seven bits of the first byte make up the slave address. The eighth bit defines a read or write operation to be performed. When R/W bit is '1', then a READ operation is selected. When R/W bit is '0', it selects WRITE operation.
- (2) The slave address is "1011101". When an address byte is sent, the device compares the first seven bits after the START condition. If they match, the device outputs an Acknowledge on the SDA data line signal.

Figure 9. Slave Address

Write Operation

An I²C write operation combines a START bit, a Slave address byte with a Write bit, a Register address byte, single or multiple Data bytes, and a STOP bit.

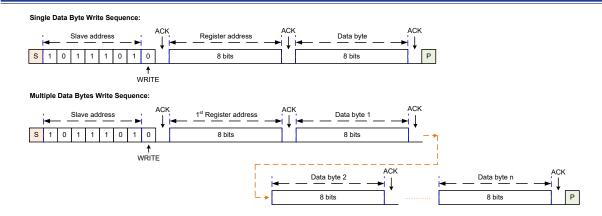


Figure 10. Write Operation

Read Sequence

The complete read mode consists of two stages. 1st stage: writes in the Register Address Byte to the slave. 2nd state: reads out the single or multiple Data Bytes from the slave.

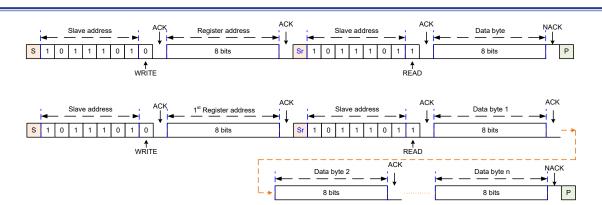


Figure 11. Read Sequence

Individual Cell Voltage Monitor I²C Register Map

The Individual Cell Voltage Monitor I²C register bit map is listed below.

Table 3. Individual Cell Voltage Monitor I²C Register Map

Address	Acronym	Access Type	Value after POR	Register Description	
00H	REG00	R/W	1000 0000	Sleep, Reference Voltage, Charge Pump and Voltage Monitor Control	
01H	REG01	R/W	0000 0000	Cell Balance Control	
02H	REG02	R/W	0000 0000	Current Monitor Setting	
03H	REG03	R/W	1000 0001	Short-Current Detection Setting 1	
04H	REG04	R/W	0000 0001	Short-Current Detection Setting 2	
05H	REG05	R/W	0000 0011	Short-Current Detection Control	
06H	REG06	R/W	1001 0010	Over-temperature Detection and Thermal Sensor	
07H	REG07	R	0000 0000	Chip Status	
08H	REG08	R/W	0000 0000	Interrupt Mask	
09H	REG09	R	0000 0000	Interrupt Flag	

• Sleep, Reference Voltage, Charge Pump and Voltage Monitor Control Register (00H)

Bit	7	6	5	4	3	2	1	0
Name	SLP1	SLP0	EN_VREF	EN_S	EN_CP	B2	B1	В0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	1	0	0	0	0	0	0	0

Bit $7 \sim 6$ **SLP1** ~ **SLP0**: Sleep mode enable control

SLP1	SLP0	Action			
0	0	Normal operation			
0	1	Enter sleep mode			
1	0	Normal operation			
1	1	Normal operation			

- Bit 5 EN_VREF: Reference voltage output function enable control
 - 0: Reference voltage output function is disabled, VREFO pin output = 0 V
 - 1: Reference voltage output function is enabled, VREFO pin output = 2.5 V
- Bit 4 EN S: Voltage monitor function enable control
 - 0: Voltage monitor function is disabled, VOUT pin output = 0 V
 - 1: Voltage monitor function is enabled, VOUT pin output = $(V_{BAT1-8} V_{BAT1-8}) \times 1/2$
- Bit 3 EN CP: Charge pump function enable control
 - 0: Charge pump function is disabled
 - 1: Charge pump function is enabled, VCP pin = V_{CP}
- Bit $2 \sim 0$ **B2** ~ **B0**: 8-to-1 analog multiplexer selection bits (MSB: B2, LSB: B0) Control B2 ~ B0 to select which cell voltage to be outputted to VOUT.

EN_S	B2	B1	В0	V _{OUT} (V)
0	_	_		0
1	0	0	0	(V _{BAT1} - V _{BAT0}) × 1/2
1	0	0	1	(V _{BAT2} - V _{BAT1}) × 1/2
1	0	1	0	(V _{BAT3} - V _{BAT2}) × 1/2
1	0	1	1	(V _{BAT4} - V _{BAT3}) × 1/2
1	1	0	0	(V _{BAT5} - V _{BAT4}) × 1/2
1	1	0	1	(V _{BAT6} - V _{BAT5}) × 1/2
1	1	1	0	(V _{BAT7} - V _{BAT6}) × 1/2
1	1	1	1	(V _{BAT8} - V _{BAT7}) × 1/2

^{*}To avoid voltage drop caused by balance current, the cell balance function must be turned off during the voltage monitoring.

• Cell Balance Control Register (01H)

Bit	7	6	5	4	3	2	1	0
Name	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

- Bit 7 **CB8**: Enable control of the cell balance switch between VBAT8 and VBAT7
 - 0: Balance switch Off
 - 1: Balance switch On
- Bit 6 CB7: Enable control of the cell balance switch between VBAT7 and VBAT6
 - 0: Balance switch Off
 - 1: Balance switch On
- Bit 5 CB6: Enable control of the cell balance switch between VBAT6 and VBAT5
 - 0: Balance switch Off
 - 1: Balance switch On
- Bit 4 CB5: Enable control of the cell balance switch between VBAT5 and VBAT4
 - 0: Balance switch Off
 - 1: Balance switch On
- Bit 3 CB4: Enable control of the cell balance switch between VBAT4 and VBAT3
 - 0: Balance switch Off
 - 1: Balance switch On

Bit 2 CB3: Enable control of the cell balance switch between VBAT3 and VBAT2

0: Balance switch Off

1: Balance switch On

Bit 1 CB2: Enable control of the cell balance switch between VBAT2 and VBAT1

0: Balance switch Off

1: Balance switch On

Bit 0 CB1: Enable control of the cell balance switch between VBAT1 and VBAT0

0: Balance switch Off1: Balance switch On

• Current Monitor Setting Register (02H)

Bit	7	6	5	4	3	2	1	0
Name	IMCE	ZERO	IAR	Reserved	Reserved	Reserved	Reserved	Reserved
R/W	R/W	R/W	R/W	_	_	_	_	_
POR	0	0	0	0	0	0	0	0

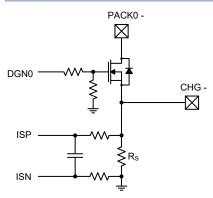
Bit 7 IMCE: Enable current monitor

0: Disable current monitor

1: Enable current monitor

Bit 6 **ZERO**: Execute zero correction of current monitor

0: The input of internal differential voltage amplifier circuit are connected to ISP and ISN pin


1: Both input of internal differential voltage amplifier circuit are connected to GND

Bit 5 IAR: Select the voltage amplifying rate of current monitor

0: Voltage amplifying rate = 10

1: Voltage amplifying rate = 50

Rs	IAR	Maximum discharge current (A)	Maximum charge current (A)
2 m0	0	195	15
2 mΩ	1	38	2
E mO	0	78	6
5 mΩ	1	15	0.8

Bit $4 \sim 0$ Reserved bits, these bits should be kept unchanged after power-on

• Short-Current Detection Setting 1 Register (03H)

Bit	7	6	5	4	3	2	1	0
Name	ISCE1	ISCE0	Reserved	Reserved	Reserved	SC_2	SC_1	SC_0
R/W	R/W	R/W	_	_	_	R/W	R/W	R/W
POR	1	0	0	0	0	0	0	1

Bit $7 \sim 6$ ISCE1 ~ ISCE0: Enable short-current detection

ISCE1	ISCE0	Action				
0	0	Short current detection is off				
0	1	Short current detection is activated				
1	0	Short current detection is off				
1	1	Short current detection is off				

Bit $5 \sim 3$ Reserved bits, these bits should be kept unchanged after power-on

Bit $2 \sim 0$ SC_2 ~ SC_0: Select the short-current detection threshold voltage (V_{SCTH}) of short-current detection

If the voltage of $(V_{\text{ISP}}$ - $V_{\text{ISN}})$ is greater than the threshold voltage, INTB is pulled low by internal switch.

SC_2	SC_1	SC_0	Threshold Voltage		
0	0	0	50 mV		
0	0	1	100 mV		
0	1	0	150 mV		
0	1	1	200 mV		
1	0	0	250 mV		
1	0	1	300 mV		
1	1 0		350 mV		
1	1 1 1		400 mV		

• Short-Current Detection Setting 2 Register (04H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	TD_4	TD_3	TD_2	TD_1	TD_0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	1

Bit $7 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on

Bit $4 \sim 0$ TD_4 ~ TD_0: Select the debounce time of short-current detection

TD_4	TD_3	TD_2	TD_1	TD_0	Debounce Time
0	0	0	0	0	0 µs
0	0	0	0	1	32 µs
0	0	0	1	0	64 µs
0	0	0	1	1	96 µs
0	0	1	0	0	128 µs
0	0	1	0	1	160 µs
0	0	1	1	0	192 µs
0	0	1	1	1	224 µs

TD_4	TD_3	TD_2	TD_1	TD_0	Debounce Time
0	1	0	0	0	256 µs
0	1	0	0	1	288 µs
0	1	0	1	0	320 µs
0	1	0	1	1	352 µs
0	1	1	0	0	384 µs
0	1	1	0	1	416 µs
0	1	1	1	0	448 µs
0	1	1	1	1	480 µs
1	0	0	0	0	512 µs
1	0	0	0	1	544 µs
1	0	0	1	0	576 µs
1	0	0	1	1	608 µs
1	0	1	0	0	640 µs
1	0	1	0	1	672 µs
1	0	1	1	0	704 µs
1	0	1	1	1	736 µs
1	1	0	0	0	768 µs
1	1	0	0	1	800 µs
1	1	0	1	0	832 µs
1	1	0	1	1	864 µs
1	1	1	0	0	896 µs
1	1	1	0	1	928 µs
1	1	1	1	0	960 µs
1	1	1	1	1	992 µs

• Short-Current Detection Control Register (05H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	Reserved	IS_ACT_ DGCN	IS_ACT_ DGN1	IS_ACT_ DGN0
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	0	0	0	0	0	0	1	1

Bit $7 \sim 3$ Reserved bits, these bits should be kept unchanged after power-on

Bit 2 IS_ACT_DGCN: Control actions of DGCN when short-current event is detected IS_ACT_DGCN can be written only when $V_{DCN} = 0$ V.

0: Remain present output status of DGCN when short-current event is detected 1: Shut down and lock the output of DGCN when short-current event is detected

The locked output of DGCN is released by the falling edge of DCN input signal.

Bit 1 IS_ACT_DGN1: Control actions of DGN1 when short-current event is detected IS_ACT_DGN1 can be written only when $V_{DN1} = 0$ V.

0: Remain present output status of DGN1 when short-current event is detected

1: Shut down and lock the output of DGN1 when short-current event is detected The locked output of DGN1 is released by the falling edge of DN1 input signal.

Bit 0 IS_ACT_DGN0: Control actions of DGN0 when short-current event is detected IS ACT DGN0 can be written only when $V_{DN0} = 0$ V.

0: Remain present output status of DGN0 when short-current event is detected

1: Shut down and lock the output of DGN0 when short-current event is detected

The locked output of DGN0 is released by the falling edge of DN0 input signal.

• Over-temperature Detection and Thermal Sensor Register (06H)

	Bit	7	6	5	4	3	2	1	0
	Name	EN_OTD	Reserved	Reserved	OTD_ ACT	Reserved	Reserved	OTDTH1	OTDTH0
	R/W	R/W	_	_	R/W	_	_	R/W	R/W
ľ	POR	1	0	0	1	0	0	1	0

Bit 7 EN OTD: Enable Over-temperature detection

0: Disable Over-temperature detection

1: Enable Over-temperature detection

Bit $6 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on

Bit 4 OTD ACT: Control action of cell balance when internal over-temperature event is detected

- 0: Remain present turn-on status of cell balance when internal over-temperature event is detected
- 1: Turn off and lock all cell balance switches when internal over-temperature event is detected.

The locked switches of cell balance can only turn on the cell balance function again after resetting the cell balance control register CB[8:1] = 0x00.

Bit $3 \sim 2$ Reserved bits, these bits should be kept unchanged after power-on

Bit $1 \sim 0$ **OTDTH1** ~ **OTDTH0**: Select the over-temperature detection threshold

Symbol	OTDTH1	OTDTH0	OTD Threshold		
T _{OTD1}	0	0	85 °C		
T _{OTD2}	0	1 100 °C			
T _{OTD3}	1	0	125 °C		
T _{OTD4}	1	1	150 °C		

Chip Status Register (07H)

Bit	7	6	5	4	3	2	1	0
Name	DGCN_ OUT	DGN1_ OUT	DGN0_ OUT	OTD_ST	EXT_WK2	EXT_WK1	Reserved	IS_SC_ ST
R/W	R	R	R	R	R	R	_	R
POR	0	0	0	0	0	0	0	0

Bit 7 **DGCN OUT:** DGCN output status

0: DGCN output status is off $(V_{DGCN} = V_{BAT})$

1: DGCN output status is on $(V_{DGCN} = V_{CP})$

Bit 6 **DGN1 OUT**: DGN1 output status

0: DGN1 output status is off $(V_{DGN1} = 0 \text{ V})$

1: DGN1 output status is on $(V_{DGN1} = V_Z)$

Bit 5 **DGN0_OUT**: DGN0 output status

0: DGN0 output status is off $(V_{DGN0} = 0 \text{ V})$

1: DGN0 output status is on $(V_{DGN0} = V_Z)$

- Bit 4 **OTD ST**: OTD event status
 - 0: Junction temperature is under T_{OTD}
 - 1: Present junction temperature is higher than T_{OTD}
 - OTD_ST goes to '0' when internal junction temperature drops under (T_{OTD} T_{HYS}).
- Bit 3 **EXT WK2**: HVWK2 wake-up event status
 - 0: Denotes that external wake-up event does not exist at HVWK2 pin
 - 1: Denotes that external wake-up event exists at HVWK2 pin

When V_{HVWK2} remains higher than V_{WKTH} over 10 μ s, EXT_WK2 will be set to '1', meanwhile SLP1 and SLP0 are reset to their POR values.

EXT_WK2 is cleared to '0' immediately when V_{HVWK2} drops under 1.5 V.

- Bit 2 **EXT_WK1**: HVWK1 wake-up event status
 - 0: Denotes that external wake-up event does not exist at HVWK1 pin
 - 1: Denotes that external wake-up event exists at HVWK1 pin or is written by MCU
 - (1) When V_{HVWK1} remains higher than V_{WKTH} over 1ms, EXT_WK1 will be set to '1', meanwhile SLP1 and SLP0 are reset to their POR values.
 - EXT WK1 is cleared to '0' immediately when V_{HVWK1} drops under 1.5 V.
 - (2) EXT_WK1 can be written as '1' by MCU for the purpose of sending a wake-up signal. EXT_WK1 have to be written as '0' and SLP[1:0] have to be written as 0b10 through I²C interface after EXT_WK1 is set as '1' by MCU, otherwise external wake-up event on HVWK1 pin cannot be recognized and the follow-up Sleep command will be failed.
 - (3) Writing both EXT_WK1 and SLP[1:0] as '1' and 0b01 is NOT permitted for avoiding unpredictable status.
 - (4) Reading EXT_WK1 reveals the external wake-up even status of HVWK1 pin only.
- Bit 1 Reserved bit, this bit should be kept unchanged after power-on
- Bit 0 IS_SC_ST: Short-current protection detecting status
 - 0: V_{ISP} is under V_{SCTH}
 - 1: Short-current event is happening at Short-current detection ($V_{ISP} > V_{SCTH}$)

• Interrupt Mask Register (08H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	OTD_MSK	EXT_WK2_ MSK	EXT_WK1_ MSK	Reserved	IS_SC_ MSK
R/W	_	_	_	R/W	R/W	R/W	_	R/W
POR	0	0	0	0	0	0	0	0

- Bit $7 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on
- Bit 4 OTD MSK: Over-temperature detection INTB mask
 - 0: OTD ST entry produces INTB pulse
 - 1: OTD_ST entry does not produce INTB pulse but still trigger OTD_FLG
- Bit 3 EXT WK2 MSK: External wake-up event detection INTB mask
 - 0: EXT WK2 entry produces INTB pulse
 - 1: EXT_WK2 entry does not produce INTB pulse but still trigger EXT_WK2_FLG
- Bit 2 EXT WK1 MSK: External wake-up event detection INTB mask
 - 0: EXT WK1 entry produces INTB pulse
 - 1: EXT WK1 entry does not produce INTB pulse but still trigger EXT WK1 FLG
- Bit 1 Reserved bit, this bit should be kept unchanged after power-on
- Bit 0 IS SC MSK: Short-current detection INTB mask
 - 0: IS_SC_ST entry produces INTB pulse
 - 1: IS_SC_ST entry does not produce INTB pulse but still trigger IS_SC_FLG

• Interrupt Flag Register (09H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	OTD_FLG	EXT_WK2_ FLG	EXT_WK1_ FLG	Reserved	IS_SC_ FLG
R/W	_	_	_	R	R	R	_	R
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on

Bit 4 OTD FLG: Over-temperature detection INTB flag

0: Normal

1: OTD_ST rising edge detected

OTD FLG is reset to '0' after I²C master reads Interrupt Flag Register.

Bit 3 EXT WK2 FLG: HVWK2 external wake-up event detection INTB flag

0: Normal

1: EXT WK2 rising edge detected

EXT WK2 FLG is reset to '0' after I²C master reads Interrupt Flag Register.

Bit 2 EXT WK1 FLG: HVWK1 external wake-up event detection INTB flag

0: Normal

1: EXT WK1 rising edge detected

EXT WK1 FLG is reset to '0' after I²C master reads Interrupt Flag Register.

Bit 1 Reserved bit, this bit should be kept unchanged after power-on

Bit 0 IS SC FLG: Short-current detection INTB flag

0: Normal

1: IS_SC_ST rising edge detected

IS SC FLG is reset to '0' after I²C master reads Interrupt Flag Register.

Cell Voltage Monitor

B2, B1 and B0 are used to control the switches SW1 \sim SW8 only if EN_S = '1'. The control truth table is shown below. It transfers 1/2 of each battery cell's voltage to VOUT. It's recommended that to keep EN_S = '0' when voltage scanning procedure is finish for power saving.

Table 4. Cell Voltage Monitor Truth Table

EN_S	B2	B1	В0	SW8	SW7	SW6	SW5	SW4	SW3	SW2	SW1	V _{OUT} (V)
0	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	$(V_{BAT1} - V_{BAT0}) \times 1/2$
1	0	0	1	0	0	0	0	0	0	1	0	$(V_{BAT2} - V_{BAT1}) \times 1/2$
1	0	1	0	0	0	0	0	0	1	0	0	$(V_{BAT3} - V_{BAT2}) \times 1/2$
1	0	1	1	0	0	0	0	1	0	0	0	$(V_{BAT4} - V_{BAT3}) \times 1/2$
1	1	0	0	0	0	0	1	0	0	0	0	$(V_{BAT5}-V_{BAT4})\times 1/2$
1	1	0	1	0	0	1	0	0	0	0	0	$(V_{BAT6} - V_{BAT5}) \times 1/2$
1	1	1	0	0	1	0	0	0	0	0	0	$(V_{BAT7} - V_{BAT6}) \times 1/2$
1	1	1	1	1	0	0	0	0	0	0	0	$(V_{BAT8} - V_{BAT7}) \times 1/2$

Cell Balance

Multiple channels of cell balance switch can be turned on via I^2C interface. The register command byte of cell balance function is 01H, and the BIT7 \sim BIT0 of Data byte correspond to the cell balance switch of each channel from SW8 to SW1, respectively. More than one switch can be turned on in the same time, but side-by-side cell balancing switches are recommended NOT to be turned on simultaneously to ensure equal balance current between each channel. After receiving turn on command, cell balance switch remains turned on until it is turned off by a '0' data or get a command of SLP0 = '1'. By setting OTD_ACT = '1', when internal junction temperature exceeds T_{OTD} , all balance switched are turned off and locked automatically and cannot be turned on again until the locked states are released. All locked switches are released by setting CB[8:1] = 0x00.

The typical cell balance current is 10 mA at battery cell voltage 4.2 V with series resistance 100 Ω , and the balance current can be adjusted by series resistors R0 \sim R8. Note that for the reason of keeping voltage monitor accuracy, do not proceed voltage monitor while cell balance is activated.

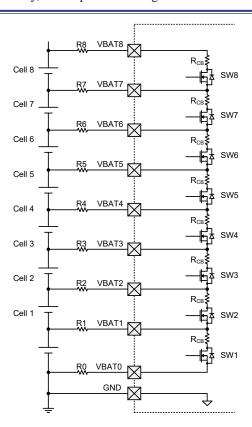


Figure 12. Cell Balance Application Schematic Diagram

Table 5. Cell Balance Switch Truth Table

CB1	CB2	CB3	CB4	CB5	CB6	CB7	CB8	Balance Switch On/Off
1	0	0	0	0	0	0	0	SW1 On, others Off
0	1	0	0	0	0	0	0	SW2 On, others Off
0	0	1	0	0	0	0	0	SW3 On, others Off
0	0	0	1	0	0	0	0	SW4 On, others Off
0	0	0	0	1	0	0	0	SW5 On, others Off
0	0	0	0	0	1	0	0	SW6 On, others Off
0	0	0	0	0	0	1	0	SW7 On, others Off
0	0	0	0	0	0	0	1	SW8 On, others Off

Note: More than one switch can be turned On in the same time.

Current Monitor

A current monitor is fabricated for measuring battery discharge current. The current monitor with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. IMCE signal is the enable control of current monitor, and current monitors can be turned off by setting IMCE = '0' for power saving purpose.

Current measurement is accomplished with placing current sensing resistors connected between ISP and ISN pins, and measure input voltage difference of these pins. The ISP pin level should be higher than the ISN pin level in discharge state for a wide discharge current sensing range. While there is no current on sensing resistor or ZERO = '1', IMON outputs a center voltage of 0.5 V (typ.). When ZERO pin is set to '0', voltage difference of $(V_{ISP} - V_{ISN})$ is multiplied by the gain of amplifier which is denoted as $G_{IM(R10)}$ for a gain of 10 or $G_{IM(R50)}$ for a gain of 50 and outputted to IMON. The IMON output voltage amplify rate (G_{IM}) is selected by IAR.

The current monitor allows to use one sense resistor for charge and discharge current sensing. In discharge state, the voltage of ISP pin is greater than the ISN pin, and the output voltage of IMON is in the range of 0.5 V (typ.) to 2.5 V (VREF). In charge state, the voltage of ISP pin is smaller ISN pin, and the output voltage of IMON is in the range of 0 V to 0.5 V (typ.). IMON output voltage V_{IMON} is given by the following equation with the current sensing resistor $R_{\rm S}$ and its current $I_{\rm S}$. The value of $I_{\rm S}$ is positive in discharge state and negative in charge state.

$$V_{IMON} = I_S \times R_S \times G_{IM} + 0.5$$

Figure 13. Current Monitor Schematic Diagram

Short-current Detection

A short-current detection and protection circuit are fabricated for detecting loading short event. Short current detection with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. The ISCE signal is the enable control of short current protection, and short-current protection can be turned off by setting ISCE = '0' for power saving purpose. By means of comparing (V_{ISP} - V_{ISN}) to short-current detection threshold voltage (V_{SCTH}), the exceeding current caused by loading shorted can be detected.

Sleep Mode

It is important not to confuse this Sleep mode with the SLEEP mode which is described in the "Power Management Control Unit" section of this datasheet.

When EXT_WK1 and EXT_WK2 signals are all '0' and receiving a sleep command from I^2C master, it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. The I^2C master will set the SLP1 and SLP0 signals according to register (00H) Bit $7\sim 6$ to make the Individual Cell Voltage Monitor to enter the Sleep mode. During the sleep mode, all outputs are shut down and the capacitor of VREG is discharged through internal discharge resistor. The pre-regulator and high voltage wake-up circuit are the only blocks that are still working in the sleep mode and operates with an ultra-low standby current of 0.1 μA (typical).

When either the EXT_WK or EXT_WK2 signal is '1', the I^2C master will set the SLP1 and SLP0 signals according to register (00H) Bit $7 \sim 6$ and abandon the sleep command until the EXT_WK and EXT_WK2 are cleared to '0'.

Table 6. Sleep Mode Status Truth Table

EXT_WK1 Status	EXT_WK2 Status	Sleep Mode Status				
0	0	According to I ² C master command or POR default value				
0	1	0				
1	0	0				
1	1	0				

Wake up from Sleep Mode

The HVWK1 and HVWK2 pins can be used for detecting charger plugged-in, switch turned on, or load connected events. When the Individual Cell Voltage Monitor is under the Sleep mode and the EXT_WK1 and EXT_WK2 signals are all '0', it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. On the contrary, if either EXT_WK1 or EXT_WK2 signal is '1', it indicates that a wake-up event has occurred. If it is detected that the HVWK1 or HVWK2 pin is triggered by a pulse with requiring at least 5.5 V voltage and 1ms width, the output of VREG will resume and the whole Individual Cell Voltage Monitor is ready for normal operation. The reference timing diagram of entering sleep mode and waked up is listed below.

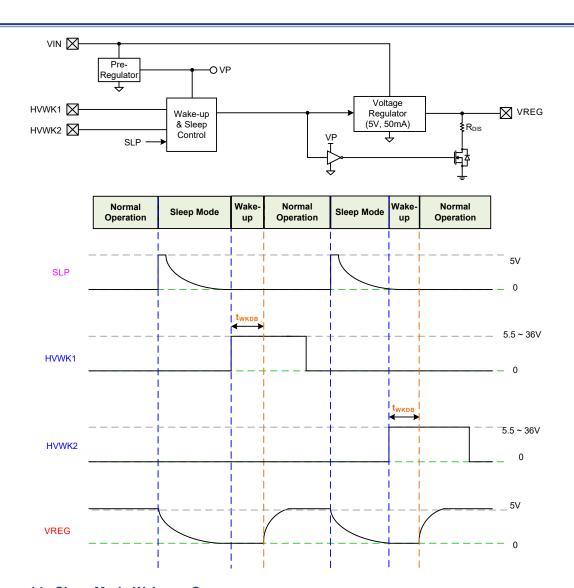


Figure 14. Sleep Mode Wake-up Sequence

Discharge Path, i.e., Low-side Power Switch Gate Driver

The DGN0 and DGN1 are fabricated in the chip as discharge switch controllers. The output voltage of DGN0 and DGN1 pins are both clamped at 12 V. A 370 k Ω pull-down resistor is integrated at discharge gate control input DN0 and DN1. While operating in Normal Operation or sleep mode, DGN0 and DGN1 are pulled down by 10 Ω resistors. The control logic and output status of DGN0 and DGN1 pins in each state are listed in the table below.

Table 7. DGN0 Control Logic and Output Status in Different Operating Modes

Operating Mode	DN0	V(DGN0)	Note
Normal Operation	0	0 V	DGN0 output low to 0 V
Normal Operation	1	12 V	DGN0 output high clamp to 12 V
Sleep Mode	Х	0 V	Pulled-low to GND by 10 Ω

Table 8. DGN1 Control Logic and Output Status in Different Operating Modes

Operating Mode	DN1	V(DGN1)	Note
Normal Operation	0	0 V	DGN1 output low to 0 V
Normal Operation	1	12 V	DGN1 output high clamp to 12 V
Sleep Mode	Х	0 V	Pulled-low to GND by 10 Ω

Charge Path, i.e., High-side Power Switch Gate Driver

A high-side power switch gate driver DGCN is provided as a charger switch controller. A charge pump circuit is fabricated to provide BAT or VCP voltage between the gate and source node of external charge power switch. When the DCN is $^{\circ}$ 0', DGCN output low, the voltage level varies with the BAT pin. When the DCN is $^{\circ}$ 1', DGCN output high, the voltage level varies with the VCP pin. A 370 k Ω pull-down resistor is integrated at the control input DCN.

Table 9. DCN Control Logic and DGCN Output Status

Input	Gate Driver Output	Note			
DCN	V(DGCN)	Note			
0	BAT	DGCN output low, the voltage level varies with the BAT pin			
1	VCP	DGCN output high, the voltage level varies with the VCP pin			

Over-temperature Detection

An over-temperature detection (OTD) is integrated in the Individual Cell Voltage Monitor to prevent from IC overheated while cell balance function is turned on. According to the setting of register (06 H), the over-temperature detection function is active when EN_OTD = '1' and any of the Cell Balance switch is turned on. When internal junction temperature $T_J > T_{OTD}$, OTD_ST is set to '1' and OTD_FLG is triggered as '1' if OTD_MSK = '0'. OTD_ST goes to '0' when internal junction temperature drops under (T_{OTD} - T_{HYS}).

By setting OTD_ACT = '1', when internal junction temperature exceeds T_{OTD} , all balance switched are turned off and locked automatically. All locked switches cannot be turned on again until they are released by setting CB [8:1] = 0x00.

VIN, VREG Capacitors

The VIN input capacitor C1 and VREG output capacitor C2 are $4.7~\mu F$ for better input noise filtering and output load transient behavior.

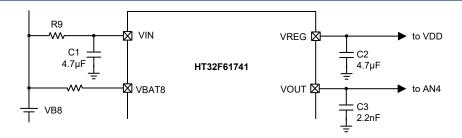


Figure 15. Input / output Capacitor Configuration

VIN_LDO Filter Recommendation

The input capacitor C1 for VIN_LDO is used for lowering the input voltage ripple while the battery is supplying a highly inductive load in PWM mode. The recommanded value of VIN_LDO input capacitor C1 is 4.7 μ F. The input resistor R9 of VIN_LDO is able to reduce the inrush current during battery assembly, and also it shares the heat on chip while VREG outputs a large current in normal operation mode. The recommanded value for VIN_LDO input resistor R9 differs from different battery cell number applications. The recommended resistance values of VIN_LDO input resistor R9 with different battery cell numbers and the corresponding VREG maximum output current are listed in the table below.

Figure 16. VIN R9 Configuration

Table 10. R9 Recommended Values for Different Cell Numbers

Battery Cell Number	Input Resistor (R9)	VREG Maximum Output Current
3S	15 Ω	50 mA
48	43 Ω	50 mA
5S	110 Ω	40 mA
6S	220 Ω	35 mA
7S	330 Ω	30 mA
8S	430 Ω	30 mA

It is necessary to select an appropriate package for VIN_LDO input resistor (R9) in order to prevent it being damaged from overheated. The maximum power of the resistor is easily calculated by:

 $P_{R9,MAX} = (I_{REG})^2 \times R9$, where I_{REG} is the maximum VREG output current

It is recommended to choose the resistor package that its maximum rated power is greater than twice the $P_{R9\,MAX}$.

VBAT1 ~ **VBAT8** Protection and Balance Resistor Selection

The VBAT1 \sim VBAT8 represents the VBAT1 \sim VBAT8 pins. Series resistors RBn includes R1 \sim R8, which not only suppress inrush and noise spikes applied to I/O pins, they affect cell balance current as well. Larger resistance of R1 \sim R8 provide better protection to VBAT1 \sim VBAT8 and other I/O pins, but they lower the cell balance current instead. The cell balance current of each channel is configured by internal balance resistors and external series resistors. Because the balance current of Cell 1 flows out through the GND pin while using the standard version product, the balance current of Cell 1 is greater than that of other cells. Considering inrush spike protection to I/O pins and noise reduction of voltage monitor, the recommended typical values of resistor R0 \sim R8 are 100 Ω , and the charge balancing current I_{CB} is 10 mA while the voltage of battery cell is 4.2 V. If larger balancing current is needed, the recommended minimum values of resistors R1 \sim R8 are 30 Ω which provide 23 mA while the voltage VBn of each cell is 4.2 V. To ensure the internal balance circuit works

properly, the minimum battery cell voltage to start the balance function is 3 V. The recommended $VBAT1 \sim VBAT8$ series resistors and their related charge balancing current are listed in the table below.

Table 11. R0 ~ R8 Recommended Values for Different Balance Current

Resistance of R0 ~ R8 (R _{Bn})	Typical Balancing Current (@V _{Bn} = 4.2 V) (I _{CB})	Note
30 Ω	23.4 mA	Minimum value of resistor R0 ~ R8
51 Ω	19 mA	_
100 Ω	11.5 mA	_
150 Ω	8.5 mA	_

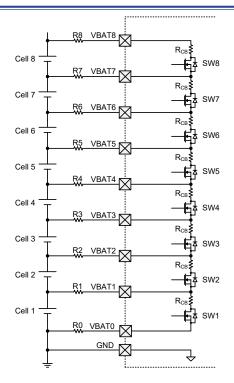


Figure 17. VBAT1 ~ VBAT8 Protection and Balance Resistors

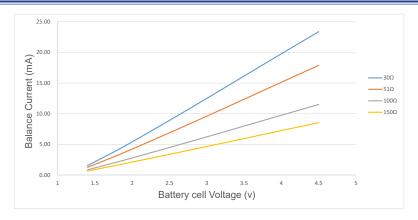


Figure 18. Balanced Current VS Balanced Voltage

Increase Charging Balance Current

Refer to the following application circuits, when cell balance is turned on internally, the R1 will generate a voltage drop to make transistor Q1 conductive. Set the V_{B1} = 4.2 V, R1 = R4 = R2 = 100 R, balanced current (IC) is 150 mA, it is recommended Q1 to choose NPN transient HFE \geq 85, $V_{CE(sat)} \leq$ 0.1 V, $V_{BE \, (sat)} \approx$ 0.7 V, and calculate R3 according to the following formula:

- 1. $R3 = (V_{B1} V_{CE(sat)}) / IC$
- 2. R3 selects resistance watts based on the calculation result

$$P_{D} = ((V_{B1} - V_{CE(sat))}^{2}) / R_{3}$$



Figure 19. External Balanced Application Circuit

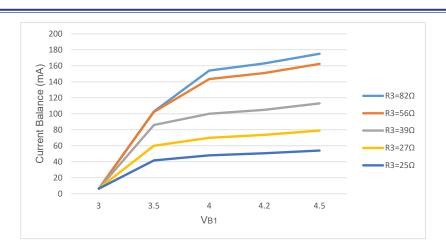


Figure 20. Alance Current VS V_{B1}

Charger and Switch Status Detection

The High-voltage wake-up function HVWK1 and HVWK2 pins are capable of detecting charger plugged in or load switched On. The recommended wake-up function external circuit is listed below. When a charger is plugged in or load switch is on, the voltage of HVWK1 is triggered to be larger than V_{WKTH} and set EXT_WK1 signal as '1'. After the charger or switch is removed or turned off, EXT_WK1 signal is reset to '0'. An device can acquire the charger or switch status by read EXT_WK1 signal through the I²C interface. Therefore, by means of reading the EXT_WK1 or EXT_WK2 signal status, additional charger or switch detection circuit for device are not necessary. The circuit below is typical application for high-voltage wake-up function and optional circuit for charger plugged-in detection while SW is ON.

If independent charger and switch detection is required, an optional circuit for charger plugged-in detection is recommended. With this optional circuit, device can independently detect charger plugged-in event and start battery charge procedure.

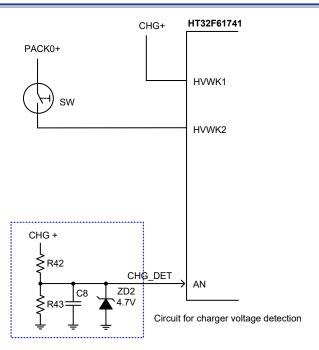


Figure 21. Charger and Switch Status Detection

Voltage Spike Suppression Method

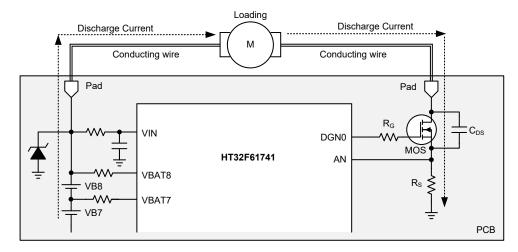


Figure 22. Simplified Typical BMS System Discharge Path Diagram

Most battery-management systems would monitor charge and discharge current to prevent over-current damage. Due to the parasitic inductance on conducting wires and PCB layout connections, large voltage spike may occurs while the controlled MOS rapidly shuts down the charge or discharge current, and this spike may damage the device VBAT1 ~ VBAT8 or VIN pins. Any voltage spike on VBAT1 ~ VBAT8 and VIN pins should not over the limitation in Absolute Maximum Ratings, which is 48 V. Four recommended measures listed below would help to reduce the voltage spike.

- 1. Make the external conducting wire and PCB layout connections as short as possible where large charge or discharge current flows.
- 2. Adjust the slew rate of MOS switch with the gate resistor R_G . Turn off the MOS with slower slew rate for lower voltage spike, and the tradeoff is a slower protection response time.
- 3. Add a capacitor (C_{DS}) between drain and source node of the MOS switch as shown above. The recommended capacitance is 0.1 μF to 0.22 μF .
- 4. Add a 39 V Zener diode between the highest voltage potential node of battery cells and GND.

Thermal Considerations

The maximum power dissipation depends upon the thermal resistance of the product package, PCB layout, rate of surrounding airflow and difference between the junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{\text{D(MAX)}} = \left(T_{\text{J(MAX)}} - T_{\text{A}}\right) / \theta_{\text{JA}}(W)$$

Where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature and θ_{JA} is the junction-to-ambient thermal resistance of the product package.

For maximum operating rating conditions, the maximum junction temperature is 125 °C. However, it is recommended that the maximum junction temperature does not exceed 125 °C during normal operation to maintain high reliability. The de-rating curve of the maximum power dissipation is show below:

$$P_{D(MAX)} = (125 \text{ °C} - 25 \text{ °C}) / (56 \text{ °C/W}) = 1.785 \text{ W}$$

For a fixed $T_{J(MAX)}$ of 125 °C, the maximum power dissipation depends upon the operating ambient temperature and the package's thermal resistance, θ_{JA} . The de-rating curve below shows the effect of rising ambient temperature on the maximum recommended power dissipation.

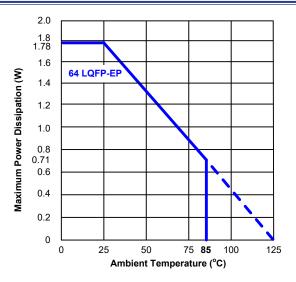


Figure 23. Derating Curve

5 Pin Assignment

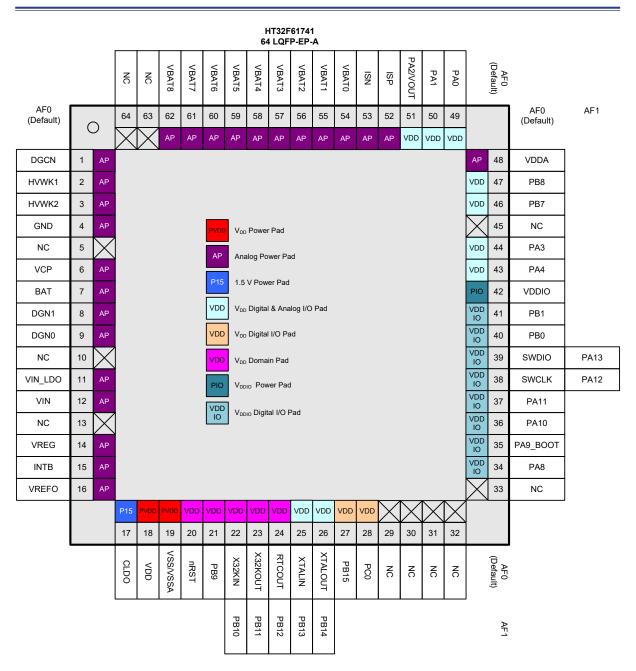


Figure 24. 64-pin LQFP-EP Pin Assignment

Table 12. Pin Assignment

Table 12	. PIN AS	signi	nent				·									
Packages							Alternat									
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
64 LQFP-EP	System Default	GPIO	ADC	N/A	MCTM /GPTM	SPI	USART /UART	I2C	N/A	N/A	N/A	N/A	N/A	PWM	N/A	System Other
49	PA0		ADC_ IN2		GT_ CH0	SPI1_ SCK	USR_ RTS	I2C1_ SCL								
50	PA1		ADC_ IN3		GT_ CH1	SPI1_ MOSI	USR_ CTS	I2C1_ SDA								
51	PA2/ VOUT ⁽²⁾		ADC_ IN4		GT_ CH2	SPI1_ MISO	USR_ TX									
52	ISP															
53	ISN															
54	VBAT0															
55	VBAT1															
56	VBAT2															
57	VBAT3															
58	VBAT4															
59	VBAT5															
60	VBAT6															
61	VBAT7															
62	VBAT8															
1	DGCN															
2	HVWK1															
3 4	HVWK2 GND															
6	VCP															
7	BAT															
8	DGN1															
9	DGN0															
11	VIN_LDO															
12	VIN															
14	VREG															
15	INTB															
16	VREFO															
17	CLDO															
18	VDD															
19, EP ⁽¹⁾	VSS/ VSSA															
20	nRST															
21	PB9				MT_ CH3									PWM1_ CH2		WAKEUP1
22	X32KIN	PB10			GT_ CH0	SPI1_ SEL	USR_ TX							PWM1_ CH3		
23	X32KOUT	PB11			GT_ CH1	SPI1_ SCK	USR_ RX							PWM0_ CH3		
24	RTCOUT	PB12				SPI0_ MISO	UR0_ RX							PWM0_ CH0		WAKEUP0
25	XTALIN	PB13					UR0_ TX	I2C0_ SCL								
26	XTALOUT	PB14					UR0_ RX	I2C0_ SDA								

							Alternat	e Funct	ion M	appin	g			<u> </u>		
Packages	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
64 LQFP-EP	System Default	GPIO	ADC	N/A	MCTM /GPTM	SPI	USART /UART	I2C	N/A	N/A	N/A	N/A	N/A	PWM	N/A	System Other
27	PB15				MT_ CH0	SPI0_ SEL		I2C1_ SCL						PWM0_ CH1		
28	PC0				MT_ CH0N	SPI0_ SCK		I2C1_ SDA						PWM0_ CH2		
34	PA8						USR_ TX							PWM1_ CH3		
35	PA9_ BOOT					SPI0_ MOSI								PWM1_ CH0		CKOUT
36	PA10				MT_ CH1	SPI0_ MOSI	USR_ RX							PWM0_ CH1		
37	PA11				MT_ CH1N	SPI0_ MISO								PWM0_ CH2		
38	SWCLK	PA12														
39	SWDIO	PA13														
40	PB0				MT_ CH1	SPI1_ MOSI	USR_ TX	I2C0_ SCL						PWM0_ CH1		
41	PB1				MT_ CH1N	SPI1_ MISO	USR_ RX	I2C0_ SDA						PWM1_ CH1		
42	VDDIO															
43	PA4		ADC_ IN6		GT_ CH0	SPI0_ SCK		I2C0_ SCL								
44	PA3		ADC_ IN5		GT_ CH3	SPI1_ SEL	USR_ RX									
46	PB7		ADC_ IN0		MT_ CH1	SPI0_ MISO	UR0_ TX	I2C1_ SCL						PWM0_ CH3		
47	PB8		ADC_ IN1		MT_ CH1N	SPI0_ SEL	UR0_ RX	I2C1_ SDA						PWM1_ CH3		
48	VDDA															
5, 10, 13, 29 ~ 33, 45, 63, 64	NC															

Note: 1. The EP is meant the exposed pad of the LQFP-EP package. The EP VSS pin is internally connected to pin 19 and needs to be externally connected to the GND pin.

2. The Individual Cell Voltage Monitor output VOUT is bonded together internally with PA2.

Table 13. Pin Description

Pin Number				_	Description
64 LQFP-EP	Pin Name	Type ⁽¹⁾	I/O Structure ⁽²⁾	Output Driving	Default Function (AF0)
49	PA0	AI/O	5V	4/8/12/16 mA	PA0
50	PA1	AI/O	5V	4/8/12/16 mA	PA1
54	DAGAGOLIT	A1/O	5V	4/8/12/16 mA	PA2, this pin provides a USART_TX function in the Boot loader mode
51	PA2/VOUT	AI/O	5V	_	VOUT, Voltage monitor output
52	ISP	AN	_	_	AFE current monitor positive terminal voltage input pin. The voltage level of ISP pin should be higher than that of ISN in discharge state
53	ISN	AI	_	_	AFE current monitor negative terminal voltage input pin. Connected to the most negative terminal of battery cells
54	VBAT0	Al	_	_	Battery cell 1 negative terminal
55	VBAT1	Al	_	_	Battery cell 1 positive terminal and battery cell 2 negative terminal
56	VBAT2	Al	_	_	Battery cell 2 positive terminal and battery cell 3 negative terminal
57	VBAT3	Al	_	_	Battery cell 3 positive terminal and battery cell 4 negative terminal
58	VBAT4	Al	_	_	Battery cell 4 positive terminal and battery cell 5 negative terminal
59	VBAT5	Al	_	_	Battery cell 5 positive terminal and battery cell 6 negative terminal
60	VBAT6	Al	_	_	Battery cell 6 positive terminal and battery cell 7 negative terminal
61	VBAT7	Al	_	_	Battery cell 7 positive terminal and battery cell 8 negative terminal
62	VBAT8	Al	_	_	Battery cell 8 positive terminal
1	DGCN	AN	_	_	Gate driver output for driving charge N-MOSFET
2	HVWK1	Al	_	_	High voltage wake-up function sense and trigger pin 1
3	HVWK2	Al	_	_	High voltage wake-up function sense and trigger pin 2
4	GND	P	_	_	Ground terminal
6	VCP	AN	_	_	Charge pump capacitor for DGCN. Connect a capacitor between VCP and BAT
7	BAT	AN	_	_	Charge pump capacitor for DGCN. Connect a capacitor between VCP and BAT
8	DGN1	AO	_	_	Gate driver output 1 for driving discharge N-MOSFET. Recommended for applying on secondary loading path
9	DGN0	AO	_	_	Gate driver output 0 for driving discharge N-MOSFET. Recommended for applying on primary loading path
11	VIN_LDO	Р	_	_	Input supply voltage for regulator
12	VIN	Р	_	_	AFE Gate-drive supply voltage. Connect to the top VBATn
14	VREG	Р	_	_	Regulator 5V/50 mA output. Connect 4.7 µF capacitor typically
15	INTB	Р	_	_	Interrupt output pin of short-current detection for AFE. NMOS open drain output and output a low level pulse when short-current event is detected. Connect to the EXTIn generally
16	VREFO	AN	_	_	Reference voltage 2.5 V output pin. Connect to the VREF generally
17	CLDO	Р	_	_	Core power LDO V_{CORE} output It must be connected a 2.2 μF capacitor as close as possible between this pin and VSS
18	VDD	Р	_	_	Voltage for digital I/O
19, EP ⁽¹⁾	VSS/VSSA	Р	_	_	Ground reference for digital I/O and A/D converter
20	nRST ⁽³⁾	ı	5V_PU	_	External reset pin
21	PB9 ⁽³⁾	I/O (VDD)	5V	4/8/12/16 mA	·
22	PB10 ⁽³⁾	AI/O (VDD)	5V	4/8/12/16 mA	X32KIN
23	PB11 ⁽³⁾	AI/O (VDD)	5V	4/8/12/16 mA	X32KOUT
24	PB12 ⁽³⁾	I/O (VDD)	5V	4/8/12/16 mA	RTCOUT

Pin Number					Description
64 LQFP-EP	Pin Name	Type ⁽¹⁾	I/O Structure ⁽²⁾	Output Driving	Default Function (AF0)
25	PB13	AI/O	5V	4/8/12/16 mA	XTALIN
26	PB14	AI/O	5V	4/8/12/16 mA	XTALOUT
27	PB15	I/O	5V	4/8/12/16 mA	PB15
28	PC0	I/O (VDDIO)	5V	4/8/12/16 mA	PC0
34	PA8	I/O (VDDIO)	5V	4/8/12/16 mA	PA8
35	PA9_BOOT	I/O (VDDIO)	5V_PU	4/8/12/16 mA	PA9_BOOT
36	PA10	I/O (VDDIO)	5V	4/8/12/16 mA	PA10
37	PA11	I/O (VDDIO)	5V	4/8/12/16 mA	PA11
38	PA12	I/O (VDDIO)	5V_PU	4/8/12/16 mA	SWCLK
39	PA13	I/O (VDDIO)	5V_PU	4/8/12/16 mA	SWDIO
40	PB0	I/O (VDDIO)	5V	4/8/12/16 mA	PB0
41	PB1	I/O (VDDIO)	5V	4/8/12/16 mA	PB1
42	VDDIO	Р	_	_	Voltage for digital I/O
43	PA4	AI/O	5V	4/8/12/16 mA	PA4
44	PA3	AI/O	5V	4/8/12/16 mA	PA3, this pin provides a USART_RX function in the Boot loader mode
46	PB7	AI/O	5V	4/8/12/16 mA	PB7
47	PB8	AI/O	5V	4/8/12/16 mA	PB8
48	VDDA	Р	_	_	Analog voltage for ADC
5, 10, 13, 29 ~ 33, 45, 63, 64	NC	_	_	_	Not connected

Note: 1. I = input, O = output, A = Analog port, P = power supply, $V_{DD} = V_{DD}$ Power.

- 2. 5V = 5 V operation I/O type, PU = Pull-up.
- 3. These pins are located at the $V_{\text{\tiny DD}}$ power domain.
- 4. In the Boot loader mode, the USART interface is available for communication.

Interconnection Signal Description

The MCU generated signals such as the PWM1 channel output and GPTM channel output have been internally connected to the Individual Cell Voltage Monitor for control purpose. The connections are listed in the following table and the related control registers should be configured correctly using application program.

Table 14. Internal Connection Signal Lines

MCU Signal Name	Individual Cell Voltage Monitor Signal Name	Description
PC7	DCN	Gate-driver DGCN control input ^(Note) . The MCU AFIO setting should be AF0 to select the General Purpose Input/Output pin function.
PC5/PWM1_CH1 (PWM)	DN1	Gate-driver DGN1 control input ^(Note) . If the PWM1_CH1 output is used, the MCU AFIO setting should be AF13 to select the PWM pin function.
PC6	SCL	Individual Cell Voltage Monitor I ² C serial clock input line. The MCU AFIO setting should be AF0 to select the General Purpose Input/Output pin function.
PC4	SDA	Individual Cell Voltage Monitor I ² C serial data input / output line. The MCU AFIO setting should be AF0 to select the General Purpose Input/Output pin function.
PA7/GT_CH3 (GPTM)	DN0	Gate-driver DGN0 control input ^(Note) . If the GT_CH3 output is used, the MCU AFIO setting should be AF4 to select the GPTM pin function.
PA5/ADC_IN7 (ADC)	IMON	Current monitor output pin. Voltage of ISP-ISN multiplied by 10 or 50 is outputted. If the ADC_IN7 output is used, the MCU AFIO setting should be AF2 to select the ADC pin function.

Note: Internal pull down with 370 k Ω .

Electrical Characteristics

Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 15. Absolute Maximum Ratings

Symbol	Value	Unit
V_{DD}	(Vss-0.3) to (Vss+5.5)	V
V _{DDIO}	(Vss-0.3) to (Vss+5.5)	V
Input Voltage	(Vss-0.3) to (V _{DD} +0.3)	V
T _A	-40 to 85	°C
T _{STG}	-60 to 150	°C
T _J	< 125	°C
P _D	< 500	mW
VIN, VIN_LDO,HVWK1,HVWK2, BAT	-0.3 to 48	V
DGCN, VCP	-0.3 to 60	V
DGN0, DGN1	-0.3 to 18	V
VREG, VOUT, ISP, ISN, IMON, INTB, VREFO	-0.3 to 5.5	V
Δ[VBATi ~ VBAT(i-1)], i=8~1	-0.3 to 5.5	V
Electrostatic Discharge Voltage (Human Body Model)	-2000 to 2000	V

Recommended DC Operating Conditions

Table 16. Recommended DC Operating Conditions

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage	_	2.5	5.0	5.5	V
V_{DDIO}	I/O Operating Voltage	_	1.8	5.0	5.5	V
V_{DDA}	Analog Operating Voltage	_	2.5	5.0	5.5	V

Recommended Operating Ratings

Table 17. Recommended Operating Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input supply voltage for regulator	_	7.5	_	36	V
T _A	Operating Temperature Range	_	-40	_	85	°C

Note: Recommended Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specified performance limits.

On-Chip LDO Voltage Regulator Characteristics

Table 18. LDO Characteristics

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{LDO}	Internal Regulator Output Voltage	$V_{DD} \ge 2.5 \text{ V}$ Regulator input @ $I_{LDO} = 35 \text{ mA}$ and voltage variant = $\pm 5 \%$, After trimming	1.425	1.5	1.57	V
I _{LDO}	Output Current	V _{DD} = 2.5 V Regulator input @ V _{LDO} = 1.5 V	_	30	35	mA
C _{LDO}	External Filter Capacitor Value for Internal Core Power Supply	The capacitor value is dependent on the core power current consumption	1	2.2	_	μF

Power Consumption

Table 19. Power Consumption Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Comple of	Donomoton	Candidiana	Torre	Max. @ T _A		l lmi4	
Symbol	Parameter	Conditions	Тур.	25 °C	85 °C	Unit	
	Supply Current (Run Mode)	V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 20 MHz, f_{BUS} = 20 MHz, all peripherals enabled	6.5	7.2			
		V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 20 MHz, f_{BUS} = 20 MHz, all peripherals disabled	4	4.5	_	A	
		V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 10 MHz, f_{BUS} = 10 MHz, all peripherals enabled	3.5	3.9	_	mA	
		V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 10 MHz, f_{BUS} = 10 MHz, all peripherals disabled	2.25	2.5	_		
		V_{DD} = 5.0 V, HSI off, LSI on, f_{CPU} = 32 kHz, f_{BUS} = 32 kHz, all peripherals enabled	32	41	41 —		
I _{DD}		V_{DD} = 5.0 V, HSI off, LSI on, f_{CPU} = 32 kHz, f_{BUS} = 32 kHz, all peripherals disabled	28	37	_	μΑ	
		V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 0 MHz, f_{BUS} = 20 MHz, all peripherals enabled	3.5	3.9			
	Supply Current	V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 0 MHz, f_{BUS} = 20 MHz, all peripherals disabled	0.8	0.92	_	mA	
	(Sleep Mode)	V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 0 MHz, f_{BUS} = 10 MHz, all peripherals enabled	2	2.25	_	ША	
		V_{DD} = 5.0 V, HSI = 20 MHz, f_{CPU} = 0 MHz, f_{BUS} = 10 MHz, all peripherals disabled	0.65	0.75	_		
	Supply Current (Deep-Sleep1 Mode)	V_{DD} = 5.0 V, All clock off (HSE/HSI/LSE), LDO in low power mode, LSI on, RTC on	23	29	_		
	Supply Current (Deep-Sleep2 Mode)	V _{DD} = 5.0 V, All clock off (HSE/HSI/LSE), LDO off, DMOS on, LSI on, RTC on	6.5	10	_	μA	

Note: 1. HSE means high speed external oscillator. HSI means 20 MHz high speed internal oscillator.

- 2. LSE means 32.768 kHz low speed external oscillator. LSI means 32 kHz low speed internal oscillator.
- 3. RTC means Real-Time clock.
- 4. Code = while (1) {208 NOP} executed in Flash.
- 5. f_{BUS} means f_{HCLK} and f_{PCLK} .

Reset and Supply Monitor Characteristics

Table 20. V_{DD} Power Reset Characteristics

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{POR}	Power On Reset Threshold (Rising Voltage on V _{DD})	T _A = -40 °C ~ 85 °C	2.22	2.35	2.48	V
V_{PDR}	Power Down Reset Threshold (Falling Voltage on V _{DD})		2.12	2.2	2.33	V
V _{PORHYST}	POR Hysteresis	_	_	150	_	mV
t_{POR}	Reset Delay Time	V _{DD} = 5.0 V	_	0.1	0.2	ms

Note: 1. Data based on characterization results only, not tested in production.

2. If the LDO is turned on, the V_{DD} POR has to be in the de-assertion condition. When the V_{DD} POR is in the assertion state then the LDO will be turned off.

Table 21. LVD/BOD Characteristics

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V_{BOD}	Voltage of Brown Out Detection	After factory-trimm V _{DD} Falling edge	After factory-trimmed, V_{DD} Falling edge		2.45	2.53	V
			LVDS = 000	2.57	2.65	2.73	V
		V _{DD} Falling edge	LVDS = 001	2.77	2.85	2.93	V
	Voltage of Low Voltage Detection		LVDS = 010	2.97	3.05	3.13	V
\/			LVDS = 011	3.17	3.25	3.33	V
V_{LVD}			LVDS = 100	3.37	3.45	3,53	V
			LVDS = 101	4.15	4.25	4.35	V
			LVDS = 110	4.35	4.45	4.55	V
			LVDS = 111	4.55	4.65	4.75	V
V _{LVDHTST}	LVD Hysteresis	V _{DD} = 5.0 V	_	_	100	_	mV
t _{suLVD}	LVD Setup Time	V _{DD} = 5.0 V	_	_	_	5	μs
t _{atLVD}	LVD Active Delay Time	V _{DD} = 5.0 V	_	_	_	_	ms
I _{DDLVD}	Operation Current (2)	V _{DD} = 5.0 V	_	_	10	20	μΑ

Note: 1. Data based on characterization results only, not tested in production.

- 2. Bandgap current is not included.
- 3. LVDS field is in the PWRCU LVDCSR register.

External Clock Characteristics

Table 22. High Speed External Clock (HSE) Characteristics

 $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	_	5.5	V
f _{HSE}	High Speed External Oscillator Frequency (HSE)	V _{DD} = 2.5 V ~ 5.0 V	4	_	20	MHz
C _{LHSE}	Load Capacitance	V_{DD} = 5.0 V, R_{ESR} = 100 Ω @ 20 MHz	_	_	12	pF
R _{FHSE}	Internal Feedback Resistor between XTALIN and XTALOUT pins	V _{DD} = 5.0 V	_	0.5	_	ΜΩ
D	Equivalent Series Resistance	V_{DD} = 5.0 V, C_L = 12 pF @ 20 MHz, HSEGAIN = 0		_	110	Ω
R _{ESR}		V_{DD} = 2.5 V, C_L = 12 pF @ 20 MHz, HSEGAIN = 1	_			
D _{HSE}	HSE Oscillator Duty Cycle	_	40	_	60	%
1	HSE Oscillator Current Consumption	$V_{DD} = 5.0 \text{ V}, R_{ESR} = 100 \Omega, C_L = 12 \text{ pF}$ @ 8 MHz, HSEGAIN = 0	_	0.85	_	mΛ
I _{DDHSE}		V_{DD} = 5.0 V, R_{ESR} = 25 Ω , C_{L} = 12 pF @ 20 MHz, HSEGAIN = 1	_	3.0	_	mA
I _{PWDHSE}	HSE Oscillator Power Down Current	V _{DD} = 5.0 V	_		0.01	μΑ
t _{SUHSE}	HSE Oscillator Startup Time	V _{DD} = 5.0 V			4	ms

Table 23. Low Speed External Clock (LSE) Characteristics

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	_	5.5	V
f _{CK_LSE}	LSE Frequency	V _{DD} = 2.5 V ~ 5.5 V	_	32.768	_	kHz
R _F	Internal Feedback Resistor	_	_	10	_	МΩ
R _{ESR}	Equivalent Series Resistance	V _{DD} = 5.0 V	30	_	TBD	kΩ
C _L	Recommended Load Capacitances	V _{DD} = 5.0 V	6	_	TBD	pF
	Oscillator Supply Current (High current mode)	f_{CK_LSE} = 32.768 kHz, R _{ESR} = 50 kΩ, C _L ≥ 7 pF, V _{DD} = 2.5 V ~ 5.5 V T _A = -40 °C ~ +85 °C	_	4.0	5.6	μA
I _{DDLSE}	Oscillator Supply Current (Low Current Mode)	f_{CK_LSE} = 32.768 kHz, R _{ESR} = 50 kΩ, C _L < 7 pF, V _{DD} = 2.5 V ~ 5.5 V, T _A = -40 °C ~ +85 °C	_	3.6	4.5	μA
	Power Down Current	_	_	_	0.01	μA
t _{SULSE}	Startup Time (Low Current Mode)	$f_{CK_LSI} = 32.768 \text{ kHz},$ $V_{DD} = 2.5 \text{ V} \sim 5.5 \text{ V}$	500	_	_	ms

Note: The following guidelines are recommended to increase the stability of the crystal circuit of the HSE / LSE clock in the PCB layout:

- 1. The crystal oscillator should be located as close as possible to the MCU to keep the trace lengths as short as possible to reduce any parasitic capacitance.
- 2. Shield lines in the vicinity of the crystal by using a ground plane to isolate signals and reduce noise.
- 3. Keep any high frequency signal lines away from the crystal area to prevent any crosstalk adverse effects.

Internal Clock Characteristics

Table 24. High Speed Internal Clock (HSI) Characteristics

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	_	5.5	V
f _{HSI}	HSI Frequency	V _{DD} = 5 V @ 25 °C	_	20	_	MHz
ACC _{HSI}	Factory Calibrated HSI Oscillator Frequency Accuracy	V _{DD} = 5.0 V, T _A = 25 °C	-2	_	2	%
		V _{DD} = 2.5 V ~ 5.5 V T _A = -40 °C ~ 85 °C	-3	_	3	%
Duty	Duty Cycle	f _{HSI} = 20 MHz	35	_	65	%
	Oscillator Supply Current	f _{HSI} = 20 MHz @	_	_	140	μA
I _{DDHSI}	Power Down Current	$V_{DD} = 2.5 \text{ V} \sim 5.5 \text{ V}$	_	_	0.01	μA
T _{SUHSI}	HSI Oscillator Startup time	f _{HSI} = 20 MHz	_	_	20	μs

Table 25. Low Speed Internal Clock (LSI) Characteristics

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	_	5.5	V
f _{LSI}	Low Speed Internal Oscillator Frequency (LSI)	V _{DD} = 5.0 V, T _A = -40 °C ~ 85 °C	21	32	43	kHz
ACC _{LSI}	LSI Frequency Accuracy	V _{DD} = 5.0 V, with factory-trimmed	-10	_	+10	%
I _{DDLSI}	LSI Oscillator Operating Current	V _{DD} = 5.0 V	_	0.5	0.8	μA
t _{SULSI}	LSI Oscillator Startup Time	V _{DD} = 5.0 V	_	_	100	μs

Memory Characteristics

Table 26. Flash Memory Characteristics

 T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
N _{ENDU}	Number of Guaranteed Program / Erase Cycles before failure (Endurance)	T _A = -40 °C ~ 85 °C	20	_	_	K cycles
t _{RET}	Data Retention Time	T _A = -40 °C ~ 85 °C	10	_	_	Years
t _{PROG}	Word Programming Time	T _A = -40 °C ~ 85 °C	20	_	_	μs
t _{ERASE}	Page Erase Time	T _A = -40 °C ~ 85 °C	2	_	_	ms
t _{MERASE}	Mass Erase Time	T _A = -40 °C ~ 85 °C	10	_	_	ms

I/O Port Characteristics

Table 27. I/O Port Characteristics

T_A = 25 °C, unless otherwise specified.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
		5.0 V I/O	V _I = V _{SS} , On-chip pull-up	_	_	3	μA
I _{IL}	Low Level Input Current	Reset pin	resister disabled	_	_	3	μA
	High Lavel Input Current	5.0 V I/O	V _I = V _{DD,} On-chip	_		3	μA
I _{IH}	High Level Input Current	Reset pin	pull-down resister disabled	_	_	3	μA
V	Low Lovel Input Voltage	5.0 V I/O		-0.5	_	V _{DD} × 0.35	V
V _{IL}	Low Level Input Voltage	Reset pin		-0.5	_	V _{DD} × 0.35	V
V	High Level Input Voltage	5.0 V I/O		V _{DD} × 0.65	_	V _{DD} + 0.5	V
V _{IH}	riigii Levei iiiput voitage	Reset pin		V _{DD} × 0.65	_	V _{DD} + 0.5	V
V	Schmitt Trigger Input	5.0 V I/O		_	0.12 × V _{DD}	_	mV
V _{HYS}	Voltage Hysteresis	Reset pin		_	0.12 × V _{DD}	_	mV
		5.0 V I/O 4	mA drive, $V_{OL} = 0.6 \text{ V}$	4	_	_	mA
I _{OL}	Low Level Output Current	5.0 V I/O 8	3 mA drive, V_{OL} = 0.6 V	8	_	_	mA
IOL	(GPIO Sink Current)	5.0 V I/O 1	2 mA drive, V _{OL} = 0.6 V	12	_	_	mA
		5.0 V I/O 1	6 mA drive, V _{OL} = 0.6 V	16	_	_	mA
		5.0 V I/O 4	mA drive, $V_{OH} = V_{DD} - 0.6 V$	_	4	_	mA
I _{OH}	High Level Output Current	5.0 V I/O 8	3 mA drive, $V_{OH} = V_{DD} - 0.6 \text{ V}$	_	8	_	mA
ЮП	(GPIO Source Current)	5.0 V I/O 12 mA drive, $V_{OH} = V_{DD} - 0.6 \text{ V}$		_	12	_	mA
		5.0 V I/O 1	6 mA drive, $V_{OH} = V_{DD} - 0.6 V$	_	16	_	mA
		5.0 V 4 mA	A drive I/O, I _{OL} = 4 mA	_	_	0.6	V
V_{OL}	Low Level Output Voltage	5.0 V 8 mA	A drive I/O, I _{OL} = 8 mA	_	_	0.6	V
♥ OL	Low Lover Output Voltage	5.0 V 12 m	nA drive I/O, I _{OL} = 12 mA	_	_	0.6	V
		5.0 V 16 m	nA drive I/O, I _{OL} = 16 mA	_	_	0.6	V
		5.0 V 4 mA	A drive I/O, I _{OH} = 4 mA	V _{DD} - 0.6	_	_	V
V _{OH}	High Level Output Voltage	5.0 V 8 mA	A drive I/O, I _{OH} = 8 mA	V _{DD} - 0.6	_	_	V
V OH	Trigit Level Output Voltage	5.0 V 12 m	nA drive I/O, I _{OH} = 12 mA	V _{DD} - 0.6	_	_	V
		5.0 V 16 m	nA drive I/O, I _{OH} = 16 mA	V _{DD} - 0.6	_	_	V
D	Internal Pull up Posister	V _{DD} = 5.0 \	/	_	50	_	kΩ
R _{PU}	Internal Pull-up Resistor	V _{DD} = 3.3 \	/	_	76	_	kΩ
D	Internal Pull-down Resistor	V _{DD} = 5.0 \	/	_	50	_	kΩ
R _{PD}	internal Full-down Resistor	V _{DD} = 3.3 \	/	_	76	_	kΩ

ADC Characteristics

Table 28. ADC Characteristics

T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DDA}	Operating Voltage	_	2.5	5.0	5.5	V
V _{ADCIN}	A/D Converter Input Voltage Range	_	0	_	V_{REF^+}	V
V_{REF^+}	A/D Converter Reference Voltage	_	_	V_{DDA}	V_{DDA}	V
I _{ADC}	Current Consumption	V _{DDA} = 5.0 V	_	1.4	1.5	mA
I _{ADC_DN}	Power Down Current Consumption	V _{DDA} = 5.0 V	_	_	0.1	μA
f _{ADC}	A/D Converter Clock Frequency	_	0.7	_	16	MHz
fs	Sampling Rate	_	0.05	_	1	Msps
t _{DL}	Data Latency	_	_	12.5	_	1/f _{ADC} Cycles
t _{s&H}	Sampling & Hold Time	_	_	3.5	_	1/f _{ADC} Cycles
t _{ADCCONV}	A/D Converter Conversion Time	ADST[7:0] = 2	_	16	_	1/f _{ADC} Cycles
Rı	Input Sampling Switch Resistance	_	_	_	1	kΩ
Cı	Input Sampling Capacitance	No pin / pad capacitance included	_	4	_	pF
t _{SU}	Startup Time	_	_	_	1	μs
N	Resolution	_	_	12	_	bits
INL	Integral Non-linearity Error	$f_S = 750 \text{ ksps}, V_{DDA} = 5.0 \text{ V}$	_	±2	±5	LSB
DNL	Differential Non-linearity Error	$f_S = 750 \text{ ksps}, V_{DDA} = 5.0 \text{ V}$	_	±1	_	LSB
Eo	Offset Error	_	_	_	±10	LSB
E _G	Gain Error	_	_	_	±10	LSB

Note: 1. Data based on characterization results only, not tested in production.

- 2. Due to the A/D Converter input channel and GPIO pin-shared function design limitation, the V_{DDA} supply power of the A/D Converter has to be equal to the V_{DD} supply power of the MCU in the application circuit.
- 3. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where C_l is the storage capacitor, R_l is the resistance of the sampling switch and R_s is the output impedance of the signal source V_s . Normally the sampling phase duration is approximately, $3.5/f_{ADC}$. The capacitance, C_l , must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to V_s for accuracy. To guarantee this, R_s is not allowed to have an arbitrarily large value.

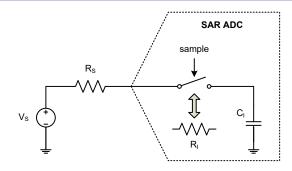


Figure 25. ADC Sampling Network Model

The worst case occurs when the extremities of the input range (0 V and V_{REF}) are sampled consecutively. In this situation a sampling error below 1/4 LSB is ensured by using the following equation:

$$R_{\text{S}} \leq \frac{3.5}{f_{\text{ADC}}C_{\text{I}}ln(2^{N+2})} - R_{\text{I}}$$

Where f_{ADC} is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model.

If, in a system where the A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, R_S may be larger than the value indicated by the equation above.

MCTM/GPTM/PWM Characteristics

Table 29. MCTM/GPTM/PWM Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f_{TM}	Timer Clock Source for MCTM, GPTM and PWM	_	_	_	f _{PCLK}	MHz
t _{RES}	Timer Resolution Time	_	1	_	_	f_{TM}
f_{EXT}	External Single Frequency on Channel 1 ~ 4	_	_	_	1/2	f_{TM}
RES	Timer Resolution	<u>—</u>	_	_	16	Bits

Individual Cell Voltage Monitor Electrical Characteristics

Table 30. Individual Cell Voltage Monitor Electrical Characteristics

 V_{IN} = 36 V, C_{REG} = 4.7 μ F, T_A = 25 °C, unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Supply and Inj	put					
V _{IN}	Supply Voltage	_	7.5	_	36	V
I _{IN(STB)}	Supply Current (Standby)	EN_S = EN_VREF = IMCE = ISCE = '0', EN_OTD = '0', DN0 = DN1 = DCN = '0'	_	3.5	6	μA
I _{IN(STB_DSG)}	VIN Supply Current with DGN0 and Short Current Detection is Activated	EN_S = EN_VREF = IMCE = EN_OTD = '0', ISCE = '1', DN0 = '1', DN1 = DCN = '0'	_	18	20	μA
I _{OPR_DGNx}	VIN Operating Current when DGN0 and DGN1 Outputs are On	DN0 = DN1 = '1', DCN = '0'	_	15	_	μA
I _{SLP}	Standby Current in SLEEP Mode	SLP1 = '0', SLP0 = '1', V _{HVWK} = 0 V	_	0.1	0.2	μA
Voltage Regula	ator					
V_{REFO}	Regulator Output Voltage	I _{LOAD} = 10 mA	4.95	5	5.05	V
I _{REG}	Regulator Maximum Output Cur- rent	V _{IN} = 7.5 V, T _A = -40 ~ 85 °C	50	_	_	mA
ΔV_{REG}	Load Regulation	I _{LOAD} = 0 ~ 50 mA	_	_	50	mV
$\frac{\Delta V_{REG}}{(V_{REG} \times \Delta V_{IN})}$	Line Regulation	V _{IN} = 7.5 ~ 36 V, I _{LOAD} = 10 mA	_	0.02		%/V
$\frac{\Delta V_{REG}}{(V_{REG} \times \Delta T_A)}$	V _{REG} Temperature Coefficient	I _{LOAD} = 1 mA, T _A = -40 ~ 85°C	_	±100	_	ppm/ °C

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
R _{DIS}	V _{REG} Discharge Resistance	SLP1 = '0', SLP0 = '1', V_{REG} = 1 V, I_{REG1} denotes VREG input current at V_{REG} = 1 V, R_{DIS} = V_{REG} / I_{REG1}	_	330	_	Ω
Cell Balancer						
		V_{Bi} = 4.5 V (i = 1 ~ 8), VBATi series resistors = 0 Ω	80	110	140	Ω
R _{CB}	Cell Balance Resistance	V _{Bi} = 2.5 V (i = 1 ~ 8), VBATi series resistors = 0 Ω	120	160	200	Ω
Reference Volta	age		1			
V _{REFO}	Reference Voltage	EN VREF = '1'	2.492	2.5	2.508	V
$\frac{\Delta V_{REFO}}{\left(V_{REFO} \times \Delta T_{A}\right)}$ (Note)	VREFO Temperature Coefficient	I _{LOAD} = 1 μA, T _A = -40 ~ 85 °C	_	_	±15	mV
I _{VREFO_SOUR}	VREFO Pin Output Source Current	C_{VREFO} = 0.1 μ F. Peak current at EN_VREF '0' \rightarrow '1' rising edge	_	2	_	mA
I _{VREFO_SINK}	VREFO Pin Output Sink Current	C_{VREFO} = 0.1 μ F. Peak current at EN_VREF '1' \rightarrow '0' falling edge	_	1	_	mA
t _{S_} V _{REFO}	VREFO Pin Settling Time	Settling time from $V_{REFO} = 0 \text{ V}$ to 2.475 V. $C_{VREFO} = 30 \text{ pF}$	_	20	30	μs
Input/Output Lo	ogic					
R _{PD}	DN0, DN1, DCN Pull Down Resistance	_	_	370	_	kΩ
V _{L(INTB)}	INTB 'Low' Output Voltage	Load current = 500 μA, V _{REG} = 5V	_	_	0.1	V
R _{PU_INTB}	INTB Pulled High to VREG Resistance	_	_	50	_	kΩ
High Voltage W	ake-Up					
V _{WKTH}	HVWK1 and HVWK2 Threshold Voltage	_	_	5.5	_	V
T _{WKDB}	HVWK1 and HVWK2 Debounce Time	_	1	_	_	ms
I _{WK}	HVWK1 and HVWK2 Input Current	V _{HVWK} = 36 V	_	50	_	μΑ
Cell Voltage Mo	onitor					
V_{Bi}	Cell Voltage	i = 1 ~ 8	1.5	_	4.5	V
$V_{\text{B}(\text{MIN})}$	Input Voltage between VBATi and VBATi-1 for Cell Voltage Monitoring	_	_	1.5	_	V
I _{Bi(PWR)}	Cell Input Leakage Current when VIN Powered	$V_{Bi} = 5 \text{ V (i} = 1 \sim 8). \text{ EN_S} = \text{`0'}.$ $V_{IN} = V_{BAT8}$	-0.1	_	0.1	μA
I _{Bi(ACT)}	Cell Input Current when Voltage Monitoring	V _{Bi} = 4.2 V × i. EN_S bit = '1'. V _{IN} = 36 V. i = 1 ~ 8	_	15	_	μA
V	Cell Voltage Monitor Output Ac-	V_{Bi} - V_{Bi-1} = 4.2 V. i = 1 ~ 8, T_A = 25°C	2.094	2.100	2.106	V
VOLIT VM		V_{Bi} - V_{Bi-1} = 4.2 V. i = 1 ~ 8. T_A = -40 ~ 85°C	2.092	2.100	2.108	V
I _{VOUT_} SOUR	Cell Voltage Monitor Output Source Current	V_{Bi} - V_{Bi-1} = 4.2 V. i = 1 ~ 8. C_{VOUT} = 0.1 μ F, Peak current at EN_S '0' \rightarrow '1' rising edge	_	2	_	mA

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
I _{VOUT_SINK}	Cell Voltage Monitor Output Sink Current	V_{Bi} - V_{Bi-1} = 4.2 V. i = 1 ~ 8. C_{VOUT} = 0.1 μ F. Peak current at EN_S '1' \rightarrow '0' falling edge	_	1	_	mA
HS Gate Charg	ge Pump					
$V_{\text{CP_UVLO+}}$	V(VCP, BAT) Turn On Level	V(VCP,BAT) rises	_	3	_	V
V _{CP_UVLO} -	V(VCP, BAT) Turn Off Level	V(VCP,BAT) falls	_	2.5	_	V
V_{CP}	VCP Output Voltage	EN_CP = '1', BAT = V _{IN} > 13 V	V _{IN} + 10	V _{IN} + 12	V _{IN} + 16	V
t _{CP_ON}	Rising Time of the Voltage Difference between VCP and VBAT	External capacitor 22 nF between VCP and BAT. $V_{\rm IN}$ = 36 V, V(VCP, BAT) rises from 10 % to 90 % ($V_{\rm CP}$ - $V_{\rm BAT}$) (Note)	_	25	_	ms
f_{CP}	Charge Pump Switching Frequency	EN_CP = '1'		600	_	kHz
Gate Drivers						
		DNx = '1', V _{IN} > 13 V	10	12	16	V
Vz	DGNx Clamp Voltage	DNx = '1', V _{IN} ≤ 13 V	_	V _{IN} - 0.7	_	V
t _r	DGNx Rising Time	C _{DGNx} = 15 nF ^(Note)	_	0.5	1.0	μs
t _f	DGNx Falling Time	C _{DGNx} = 15 nF ^(Note)	_	0.5	1.0	μs
t _{PD_HL}	DGNx Falling Propagation Delay Time	C _{DGNx} = 15 nF ^(Note)	_	0.5	1.0	μs
t _{PD_LH}	DGNx Rising Propagation Delay Time	C _{DGNx} = 15 nF ^(Note)	_	0.5	1.0	μs
t _{MM}	DGNx Delay Time Mismatch	$C_{DGNx} = 15 \text{ nF},$ $t_{MM} = t_{PD_LHx} - t_{PD_HLx} $	_	0.5	1.0	μs
I _{SOURCE}	DGNx Source Current	C_{DGNx} = 1 μ F, peak current at DNx '0' \rightarrow '1' rising edge	_	850	_	mA
I _{SINK}	DGNx Sink Current	C_{DGNx} = 1 μ F, peak current at DNx '1' \rightarrow '0' falling edge	_	850	_	mA
R_{PL_S}	DGNx Pull Low Resistance at Sleep and Standby Mode	DNx = '0', SLP1 = '0' & SLP0 = '1' & HVWKx = '0' or HVWKx = '1', resistance between DGNx and GND	_	10	_	Ω
V _{DGCN_ON}	DGCN Gate Drive Turn-on Voltage	EN_CP = '1', DCN = '1'	_	V _{CP}	_	V
V _{DGCN_OFF}	DGCN Gate Drive Turn-off Voltage	EN_CP = '1', DCN = '0'		V_{IN}	_	V
R _{DGCN_ON}	DGCN Gate Drive Turn-on Resistance	EN_CP = '1', DCN = '1'	_	2	_	kΩ
R _{DGCN_OFF}	DGCN Gate Drive Turn-off Resistance	EN_CP = '1', DCN = '0'	_	150	_	Ω
t _{rC}	Rising Time of the Voltage Difference between DGCN and BAT	$\begin{split} &EN_CP = \text{`1', } C_{DGCN\text{-BAT}} = 15 \text{ nF,} \\ &V_{IN} = 36 \text{ V, } V(DGCN, BAT) \text{ rises} \\ &from 10 \% to 90 \% \\ &(V_{DGCN} - V_{BAT}) \text{\ensuremath{(Note)}} \end{split}$		220	_	μs
t _{fC}	Falling Time of the Voltage Difference between DGCN and BAT	EN_CP = '1', $C_{DGCN-BAT}$ = 15 nF, V_{IN} = 36 V, V(DGCN, BAT) falls from 90 % to 10 % $\left(V_{DGCN} - V_{BAT}\right)^{(Note)}$	_	5	_	μs

Note: These parameters are periodically sampled but not 100% tested.

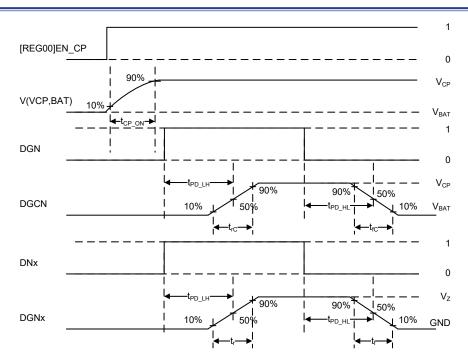


Figure 26. Individual Cell Voltage Monitor Characteristics

Table 31. Individual Cell Voltage Monitor Electrical Characteristics (ISP-ISN Shunt Resistor = 5 m Ω)

 V_{IN} = 36 V, C_{REG} = 4.7 $\mu\text{F},\,T_{\text{A}}$ = 25 °C, unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit		
Current Monitor								
C		IMCE = '1', IAR = '0', T _A = 25 °C	9.7	10	10.3	V/V		
G _{IM(R10)}	IMON Output Voltage Amplify	IMCE = '1', IAR = '0', T _A = -40 ~ 85 °C	9.5	10	10.5	V/V		
G	Rate	IMCE = '1', IAR = '1', T _A = 25 °C	48.5	50	51.5	V/V		
$G_{IM(R50)}$		IMCE = '1', IAR = '1', T _A = -40 ~ 85 °C	47.5	50	52.5	V/V		
	IMCE = '1', IAR = '0', V_{REG} = 5 V, V_{REFO} = 2.5 V, shunt resistor = 5 m Ω	-6	_	36	Α			
I _{MR(R10)}	0 111 7 5	IMCE = '1', IAR = '0', V_{REG} = 5 V, V_{REFO} = 2.5 V, shunt resistor = 2 m Ω	-15	_	90	Α		
Current Monitor Range	Current Monitor Range	IMCE = '1', IAR = '1', V_{REG} = 5 V, V_{REFO} = 2.5 V, shunt resistor = 5 m Ω	-1.2	_	6.6	Α		
I _{MR(R50)}		$\begin{split} &\text{IMCE = '1', IAR = '1', V_{REG} = 5 V,} \\ &\text{V}_{REFO} = 2.5 \text{ V, shunt resistor = 2 m} \Omega \end{split}$	-3.0	_	16.5	Α		
$V_{\text{IMO}(\text{R10})}$	IMON Output Voltage at No	V_{ISP} - V_{ISN} = 0 V, IMCE = '1', ZERO = '0', IAR = '0'	0.3	0.5	0.7	V		
$V_{\text{IMO}(\text{R50})}$	Sensing Current	V_{ISP} - V_{ISN} = 0 V, IMCE = '1', ZERO = '0', IAR = '1'	0.3	0.5	0.85	V		
$V_{\text{IMZ}(\text{R10})}$	IMON Output Voltage at	IMCE = '1', ZERO = '1', IAR = '0'	0.3	0.5	0.7	V		
$V_{\text{IMZ}(\text{R50})}$	ZERO State	IMCE = '1', ZERO = '1', IAR = '1'	0.3	0.5	0.85	V		
$I_{\text{IMO(SOURCE)}}$	IMON Output Source Current	_	100	_	_	μΑ		
$I_{\text{IMO(SINK)}}$	IMON Output Sink Current	_	100	_	_	μΑ		

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit		
t _{IMZS(R10)}	IMON Settling Time at ZERO	IAR = '0', ZERO = '1', timing from IMCE = '1' to V _{IMON} settled at V _{IMZ}	_	_	100	μs		
t _{IMZS(R50)}	State	IAR = '1', ZERO = '1', timing from IMCE = '1' to V _{IMON} settled at V _{IMZ}	_	_	500	μs		
I _{IS}	ISP, ISN Input Current	$V_{ISP} = V_{ISN} = 0 \text{ V, IAR} = '0', ZERO = '0'$	_	-0.46	_	μA		
$t_{\text{IMR_P}(\text{R10})}$	IMON Output Rising Time	IAR = '0', ZERO = '0', IMCE = '1', V_{ISN} = 0 V, V_{ISP} rises from 0 V to 0.1 V in 10 μ s	_	60	_	μs		
t _{IMR_P(R50)}	(V _{ISP} >V _{ISN})	IAR = '1', ZERO = '0', IMCE = '1', V_{ISN} = 0 V, V_{ISP} rises from 0V to 0.1 V in 10 μ s	_	300	_	μs		
t _{IMF_P(R10)}	IMON Output Falling Time	IAR = '0', ZERO = '0', IMCE = '1', V_{ISN} = 0 V, V_{ISP} falls from 0.1 V to 0 V in 10 μ s	_	60	_	μs		
t _{IMF_P(R50)}	(V _{ISP} >V _{ISN})	IAR = '1', ZERO = '0', IMCE = '1', V_{ISN} = 0 V, V_{ISP} falls from 0.1 V to 0 V in 10 μ s	_	300	_	μs		
t _{IMR_N(R10)}	IMON Output Rising Time	IAR = '0', ZERO = '0', IMCE = '1', V_{ISP} = 0 V, V_{ISN} rises from 0 V to 0.1 V in 10 μ s	_	60	_	μs		
t _{IMR_N(R50)}	(V _{ISP} <v<sub>ISN)</v<sub>	IAR = '1', ZERO = '0', IMCE = '1', V _{ISP} = 0 V, V _{ISN} rises from 0 V to 0.1 V in 10 μs	_	300	_	μs		
t _{IMF_N(R10)}	IMON Output Falling Time	IAR = '0', ZERO = '0', IMCE = '1', V_{ISP} = 0 V, V_{ISN} falls from 0.1 V to 0 V in 10 μ s	_	30	_	μs		
t _{IMF_N(R50)}	$(V_{ISP} < V_{ISN})$	IAR = '1', ZERO = '0', IMCE = '1', $V_{ISP} = 0 V$, V_{ISN} falls from 0.1 V to 0 V in 10 μ s	_	30	_	μs		
Short-Cui	rrent Detection							
V _{SCTH}	Short Circuit Detection Threshold voltage	ISCE = '1', SC_[2:0] = 0b001	_	105	_	mV		
t _{SCDB}	Short Circuit Detection De- bounce Time	ISCE = '1', TD_[4:0] = 0b00001 (default value)	_	6.32	_	μs		
t _{SCPD}	Short Circuit Detection Propagation Delay Time	ISCE = '1', TD_[4:0] = 0b00000, INTB sink current = 50 μ A. Propagation delay time from V _{ISP} > V _{SCTH} to INTB pulled 'Low'		1	_	μs		
Over-Temperature Detection								
		EN_OTD = '1', OTDTH[1:0] = 0b00	_	85	_	°C		
T _{OTD}	Over-temperature Detection	EN_OTD = '1', OTDTH[1:0] = 0b01	_	100	_	°C		
	Threshold	EN_OTD = '1', OTDTH[1:0] = 0b10	_	125	_	°C		
		EN_OTD = '1', OTDTH[1:0] = 0b11 (default value)	_	150	_	°C		
T _{HYS}	Over-temperature Detection Hysteresis	EN_OTD = '1'	_	20	_	°C		

Individual Cell Voltage Monitor I²C Interface Characteristic

Table 32. Individual Cell Voltage Monitor I²C Interface Characteristic

 V_{IN} = 36 V and T_A = 25°C, unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
f _{SCL}	Clock Frequency	_	_	_	400	kHz
t_{BUF}	Bus Free Time	Bus free time between STOP and START	1.3	_	_	μs
t _{HD: STA}	START Hold Time	After this period, the first clock pulse is generated	0.6		_	μs
t_{LOW}	SCL Low Time	_	1.3	_	_	μs
t _{HIGH}	SCL High Time	_	0.6	_	_	μs
t _{SU: STA}	START Setup Time	Only relevant for REPEATED START	0.6	_	_	μs
t _{HD: DAT}	Data Hold Time	_	0	_	_	ns
t _{SU: DAT}	Data Setup Time	_	100	_	_	ns
t _{R_I2C}	Rising Time	SDA and SCL	_	_	0.3	μs
t _{F_I2C}	Falling Time	SDA and SCL	_	_	0.3	μs
t _{SU: STO}	STOP Setup Time	_	0.6	_	_	μs
t _{AA}	Output Valid from Clock			_	0.9	μs
t _{SP}	Input Filter Time Constant	SDA and SCL noise suppression time	_	_	20	ns
t _{out}	I ² C Time-out	Default setting	_	32	_	ms

Note: These parameters are periodically sampled but not 100% tested.

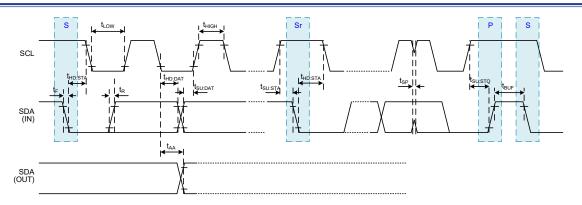


Figure 27. Individual Cell Voltage Monitor I²C Timing Diagram

I²C Characteristics

Table 33. I²C Characteristics

Cumbal	Davameter	Standa	rd Mode	Fast	Fast Mode		Fast Plus Mode	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{SCL}	SCL Clock Frequency	_	100	_	400	_	1000	kHz
t _{SCL(H)}	SCL Clock High Time	4.5	_	1.125	_	0.45	_	μs
t _{SCL(L)}	SCL Clock Low Time	4.5	_	1.125	_	0.45	_	μs
t _{FALL}	SCL And SDA Fall Time	_	1.3		0.34	_	0.135	μs
t _{RISE}	SCL And SDA Rise Time		1.3		0.34		0.135	μs
t _{SU(SDA)}	SDA Data Setup Time	500	_	125	_	50	_	ns
4	SDA Data Hold Time (Note 5)	0	_	0	_	0	_	ns
t _{H(SDA)}	SDA Data Hold Time (Note 6)	100	_	100	_	100	_	ns
t _{VD(SDA)}	SDA Data Valid Time	_	1.6		0.475	_	0.25	μs
t _{SU(STA)}	START Condition Setup Time	500	_	125	_	50	_	ns
t _{H(STA)}	START Condition Hold Time	0	_	0	_	0	_	ns
t _{SU(STO)}	STOP Condition Setup Time	500	_	125	_	50	_	ns

Note: 1. Data based on characterization results only, not tested in production.

- 2. To achieve 100 kHz standard mode, the peripheral clock frequency must be higher than 2 MHz.
- 3. To achieve 400 kHz fast mode, the peripheral clock frequency must be higher than 8 MHz.
- 4. To achieve 1 MHz fast mode plus, the peripheral clock frequency must be higher than 20 MHz.
- 5. The above characteristic parameters of the I^2C bus timing are based on: COMBFILTEREN = 0 and SEQFILTER = 00.
- 6. The above characteristic parameters of the I^2C bus timing are based on: COMBFILTEREN = 1 and SEQFILTER = 00.

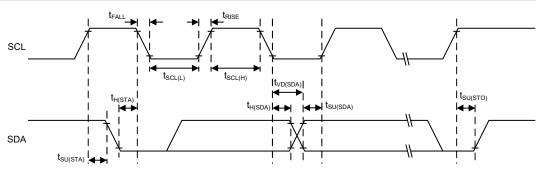


Figure 28. I²C Timing Diagrams

SPI Characteristics

Table 34. SPI Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
	SPI Master Mode							
f _{SCK}	SPI Master Output SCK Clock Frequency	Master mode, SPI peripheral clock frequency f _{PCLK}	_	_	f _{PCLK} /2	MHz		
t _{SCK(H)}	SCK Clock High and Low Time	_	t _{SCK} /2 - 2	_	t _{SCK} /2 + 1	ns		
t _{V(MO)}	Data Output Valid Time	_	_	_	5	ns		
t _{H(MO)}	Data Output Hold Time	_	2	_	_	ns		
t _{SU(MI)}	Data Input Setup Time	_	5	_	_	ns		
t _{H(MI)}	Data Input Hold Time	_	5	_	_	ns		
SPI Slave	Mode							
f _{SCK}	SPI Slave Input SCK Clock Frequency	Slave mode, SPI peripheral clock frequency f _{PCLK}	_	_	f _{PCLK} /3	MHz		
Duty _{SCK}	SPI Slave Input SCK Clock Duty Cycle	_	30	_	70	%		
t _{SU(SEL)}	SEL Enable Setup Time	_	3 t _{PCLK}	_	_	ns		
t _{H(SEL)}	SEL Enable Hold Time	_	2 t _{PCLK}	_	_	ns		
t _{A(SO)}	Data Output Access Time	_	_	_	3 t _{PCLK}	ns		
t _{DIS(SO)}	Data Output Disable Time	_	_	_	10	ns		
t _{V(SO)}	Data Output Valid Time	_	_	_	25	ns		
t _{H(SO)}	Data Output Hold Time	_	15	_	_	ns		
t _{SU(SI)}	Data Input Setup Time	_	5	_	_	ns		
t _{H(SI)}	Data Input Hold Time	_	4	_	_	ns		

Note: 1. f_{SCK} is SPI output/input clock frequency and t_{SCK} = 1/ f_{SCK} .

^{2.} f_{PCLK} is SPI peripheral clock frequency and t_{PCLK} = 1/ f_{PCLK} .

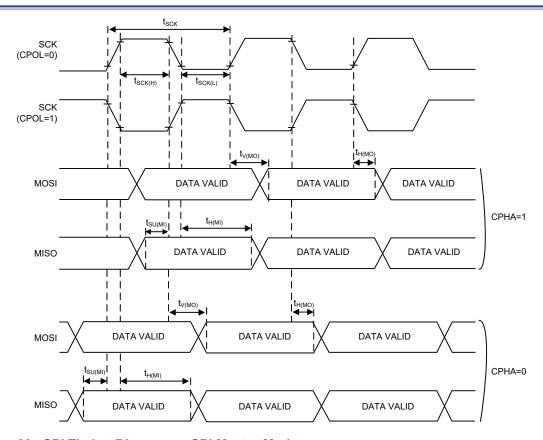


Figure 29. SPI Timing Diagrams - SPI Master Mode

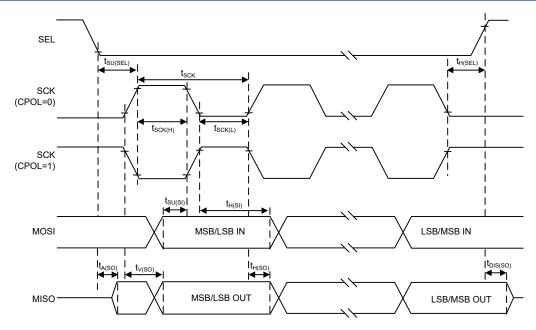
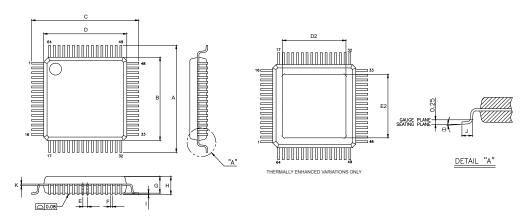


Figure 30. SPI Timing Diagrams – SPI Slave Mode with CPHA=1

7 Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package Information</u>.


Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

Rev. 1.00 66 of 68 April 23, 2024

64-pin LQFP-EP (7mm × 7mm) Outline Dimensions

Cumbal		Dimensions in inch				
Symbol	Min.	Nom.	Max.			
А		0.354 BSC				
В		0.276 BSC				
С		0.354 BSC				
D		0.276 BSC				
E		0.016 BSC				
D2	0.198	_	0.216			
E2	0.198	_	0.216			
F	0.005	0.007	0.009			
G	0.053	0.055	0.057			
Н	_	_	0.063			
I	0.002	_	0.006			
J	0.018	0.024	0.030			
K	0.004	0.004 — 0.008				
α	0°	_	7°			

O h. a. l.		Dimensions in mm				
Symbol	Min.	Nom.	Max.			
А		9.00 BSC				
В		7.00 BSC				
С		9.00 BSC				
D		7.00 BSC				
Е		0.40 BSC				
D2	5.03	_	5.48			
E2	5.03	_	5.48			
F	0.13	0.18	0.23			
G	1.35	1.40	1.45			
Н	_	_	1.60			
I	0.05	_	0.15			
J	0.45	0.60	0.75			
K	0.09	_	0.20			
α	0°	_	7°			

Copyright[®] 2024 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.