

HT32F61741 Datasheet

32-Bit Arm® Cortex®-M0+ BMS Microcontroller, 64 KB Flash and 8 KB SRAM with Individual Cell Voltage Monitor, 1 Msps ADC, DIV, USART, UART, SPI, I2 C, MCTM, GPTM, BFTM, PWM, CRC, RTC and WDT

Revision: V1.00 Date: April 23, 2024

www.holtek.com

Table of Contents

List of Tables

List of Figures

<u>General Description</u>

The Holtek HT32F61741 device is a high performance, low power consumption 32-bit microcontroller based around an Arm® Cortex®-M0+ processor core. The Cortex®-M0+ is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer, and including advanced debug support.

The device operates at a frequency of up to 20 MHz. It provides 64 KB of embedded Flash memory for code/data storage and 8 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as Hardware Divider DIV, ADC, I²C, USART, UART, SPI, MCTM, GPTM, PWM, BFTM, CRC-16/32, RTC, WDT, SW-DP (Serial Wire Debug Port), etc., are also implemented in the device. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The device also has an individual cell voltage monitor module, a high accuracy voltage regulator, two discharge N-type MOSFET gate drivers and a charge N-type MOSFET gate driver, which is suitable for 3 to 8 rechargeable lithium batteries. The cell voltage monitor is designed to monitor each battery cell voltage individually and outputs the divide-by-2 voltage to the analog multiplexer with \pm 7.5 mV accuracy when analog output is 2.1 V. After being selected by an analog multiplexer, the output voltage is directly connected to the internal A/D converter for measurement. The integrated high accuracy V_{REFO} is 2.5 V (maximum drift ± 15 mV). The internal gate drivers can directly drive external power N-type MOSFETs to control charge and discharge. It also has functions of differential amplifier to detect charge/discharge current, hardware discharge shortcurrent protection and overtemperature protection and so on. The integrated battery balance circuitry provides a cell balance current without the need of external transistors.

The above features ensure that the device is suitable for use in a wide range of applications, especially in areas such as handheld measurement instruments, electric power tools, handheld hair dryers, handheld vacuum cleaners in addition to many others.

arm CORTEX

2 Features

Core

- 32-bit Arm[®] Cortex[®]-M0+ processor core
- Up to 20 MHz operating frequency
- \blacksquare Single-cycle multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC)
- **a** 24-bit SysTick timer

The Cortex[®]-M0+ processor is a very low gate count, highly energy efficient processor that is intended for microcontroller and deeply embedded applications that require an area optimized, low-power processor. The processor is based on the ARMv6-M architecture and supports Thumb[®] instruction sets, single-cycle I/O ports, hardware multiplier and low latency interrupt respond time.

On-Chip Memory

- 64 KB on-chip Flash memory for instruction/data and option byte storage
- 8 KB on-chip SRAM
- \blacksquare Supports multiple boot modes

The Arm® Cortex®-M0+ processor accesses and debug access share the single external interface to external AHB peripherals. The processor access takes priority over debug access. The maximum address range of the Cortex \textdegree -M0+ is 4 GB since it has a 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex®-M0+ processor to reduce the software complexity of repeated implementation by different device vendors. However, some regions are used by the Arm® Cortex®-M0+ system peripherals. Refer to the Arm® Cortex®-M0+ Technical Reference Manual for more information. Figure 2 in the Overview chapter shows the memory map of the device, including code, SRAM, peripheral and other pre-defined regions.

Flash Memory Controller – FMC

- \blacksquare 32-bit word programming with In System Programming (ISP) and In Application Programming (IAP)
- \blacksquare Flash protection capability to prevent illegal access

The Flash Memory Controller, FMC, provides all the necessary functions for the embedded on-chip Flash Memory. The word program/page erase functions are also provided.

Reset Control Unit – RSTCU

- \blacksquare Supply supervisor
	- Power on Reset / Power down Reset POR / PDR
	- Brown-out Detector BOD
	- Programmable Low Voltage Detector LVD

The Reset Control Unit, RSTCU, has three kinds of reset, a power on reset, a system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller. The resets can be triggered by external signals, internal events and the reset generators.

Clock Control Unit – CKCU

- \blacksquare External 4 to 20 MHz crystal oscillator
- External 32.768 kHz crystal oscillator
- **Example 1** Internal 20 MHz RC oscillator trimmed to ± 2 % accuracy at 25 °C operating temperature
- \blacksquare Internal 32 kHz RC oscillator
- \blacksquare Independent clock divider and gating bits for peripheral clock sources

The Clock Control Unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), an HSE clock monitor, clock pre-scalers, clock multiplexers, APB clock divider and gating circuitry. The AHB, APB and Cortex®-M0+ clocks are derived from the system clock (CK_SYS) which can come from the HSI, HSE, LSI or LSE. The Watchdog Timer and Real-Time Clock (RTC) use either the LSI or LSE as their clock source.

Power Management Control Unit – PWRCU

- **E** Flexible power supply: V_{DD} power supply (2.5 V ~ 5.5 V), V_{DDIO} for I/Os (1.8 V ~ 5.5 V)
- Integrated 1.5 V LDO regulator for MCU core, peripherals and memories power supply
- \blacksquare V_{DD}, V_{DDIO} and V_{CORE} power domains
- Three power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2

Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in these devices provides many types of power saving modes such as Sleep, Deep-Sleep1 and Deep-Sleep2 modes. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption.

Real-Time Clock – RTC

- 24-bit up-counter with a programmable prescaler
- Alarm function
- Interrupt and Wake-up event

The Real-Time Clock, RTC, includes an APB interface, a 24-bit count-up counter, a control register, a prescaler, a compare register and a status register. The RTC circuits are located in the V_{CORE} power domain. When the device enters the power-saving mode, the RTC counter is used as a wakeup timer to let the system resume from the power saving mode.

External Interrupt/Event Controller – EXTI

- Up to 16 EXTI lines with configurable trigger source and type
- All GPIO pins can be selected as EXTI trigger source
- Source trigger type includes high level, low level, negative edge, positive edge or both edges
- Individual interrupt enable, wakeup enable and status bits for each EXTI line
- Software interrupt trigger mode for each EXTI line
- \blacksquare Integrated deglitch filter for short pulse blocking

The External Interrupt/Event Controller, EXTI, comprises 16 edge detectors which can generate a wake-up event or interrupt requests independently. Each EXTI line can also be masked independently.

Hardware Divider – DIV

- \blacksquare Signed/unsigned 32-bit divider
- Operation in 8 clock cycles, load in 1 clock cycle
- **Divide by zero error Flag**

The divider is the truncated division and needs a software triggered start signal by using the control register "START" bit. After 8 clock cycles, the divider calculate complete flag will be set to 1, and if the divisor register data is zero, the divide by zero error flag will be set to 1.

Analog to Digital Converter – ADC

- \blacksquare 12-bit SAR ADC engine
- \blacksquare Up to 1 Msps conversion rate
- Up to 7 external analog input channels

A 12-bit multi-channel Analog to Digital Converter is integrated in these devices. There are multiplexed channels, which include 7 external analog signal channels and 2 internal channels which can be measured. If the input voltage is required to remain within a specific threshold window, an Analog Watchdog function will monitor and detect these signals. An interrupt will then be generated to inform the device that the input voltage is not within the preset thresholds. There are three conversion modes to convert an analog signal to digital data. The ADC can be operated in one shot, continuous and discontinuous conversion modes.

I/O Ports – GPIO

- Up to 23 GPIOs
- \blacksquare Port A, B, C are mapped as 16 external interrupts EXTI
- \blacksquare Almost all I/O pins have configurable output driving current

There are up to 23 General Purpose I/O pins, GPIO, for the implementation of logic input/output functions. Each of the GPIO ports has a series of related control and configuration registers to maximize flexibility and to meet the requirements of a wide range of applications.

The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI.

Basic Function Timer – BFTM

- \Box 32-bit compare match count-up counter no I/O control
- \blacksquare One shot mode counter stops counting when compare match occurs
- \blacksquare Repetitive mode counter restarts when compare match occurs

The Basic Function Timer Module, BFTM, is a simple 32-bit up-counting counter designed to measure time intervals and generate a one shot or repetitive interrupts. The BFTM can operate in two modes, repetitive and one shot modes. In the repetitive mode, the counter will restart at each compare match event. The BFTM also supports a one shot mode which will force the counter to stop counting when a compare match event occurs.

Motor Control Timer – MCTM

- 16-bit up, down, up/down auto-reload counter
- \blacksquare Up to 4 independent channels
- \blacksquare 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Input Capture function
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting
- Single Pulse Mode Output
- Complementary Outputs with programmable dead-time insertion
- ▆ Break input to force the timer's output signals into a reset or fixed condition

The Motor Control Timer Module, MCTM, consists of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter Reload Register (CRR), one 8-bit repetition counter and several control/status registers. It can be used for a variety of purposes including measuring the pulse width of input signals or generating output waveforms such as compare match outputs, PWM outputs or complementary PWM outputs with dead-time insertion. The MCTM is capable of offering full functional support for motor control, hall sensor interfacing and break input.

General-Purpose Timer – GPTM

- 16-bit up, down, up/down auto-reload counter
- \blacksquare Up to 4 independent channels
- \blacksquare 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Input Capture function
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting
- Single Pulse Mode Output
- \blacksquare Encoder interface controller with two inputs using quadrature decoder

The General Purpose Timer Module, GPTM, consists of one 16-bit up/down-counter, four 16-bit Capture / Compare Registers (CCRs), one 16-bit Counter Reload Register (CRR) and several control / status registers. It can be used for a variety of purposes including general time measurement, input signal pulse width measurement, output waveform generation such as single pulse generation or PWM output generation. The GPTM supports an Encoder Interface using a quadrature decoder with two inputs.

Pulse-Width-Modulation Timer – PWM

- 16-bit up, down, up/down auto-reload counter
- \Box Up to 4 independent channels for each timer
- \blacksquare 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting
- Single Pulse Mode Output

The Pulse-Width-Modulation Timer, PWM, consists of one 16-bit up/down-counter, four 16-bit Compare Registers (CRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. It can be used for a variety of purposes including general timer and output waveform generation such as single pulse generation or PWM output.

Watchdog Timer – WDT

- \blacksquare 12-bit down counter with 3-bit prescaler
- \blacksquare Provides reset to the system
- Programmable watchdog timer window function
- \blacksquare Register write protection function

The Watchdog Timer is a hardware timing circuit that can be used to detect a system lock-up due to software trapped in a deadlock. It includes a 12-bit count-down counter, a prescaler, a WDT delta value register, WDT operation control circuitry and a WDT protection mechanism. If the software does not reload the counter value before a Watchdog Timer underflow occurs, a reset will be generated when the counter underflows. In addition, a reset is also generated if the software reloads the counter when it reaches a delta value. It means that the counter reload must occur when the Watchdog timer value has a value within a limited window using a specific method. The Watchdog Timer counter can be stopped while the processor is in the debug mode. The register write protect function which can be enabled to prevent an unexpected change in the Watchdog timer configuration.

Inter-integrated Circuit - I²C

- Supports both master and slave modes with a frequency of up to 1 MHz
- Provides an arbitration function and clock synchronization
- Supports 7-bit and 10-bit addressing modes and general call addressing
- \blacksquare Supports slave multi-addressing mode with address mask function

The I²C is an internal circuit allowing communication with an external I²C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I²C module provides three data transfer rates: 100 kHz in the Standard mode, 400 kHz in the Fast mode and 1 MHz in the Fast plus mode. The SCL period generation register is used to setup different kinds of duty cycle implementations for the SCL pulse.

The SDA line which is connected directly to the $I²C$ bus is a bi-directional data line between the master and slave devices and is used for data transmission and reception. The $I²C$ also has an arbitration detect function and clock synchronization to prevent situations where more than one master attempts to transmit data to the I²C bus at the same time.

Serial Peripheral Interface – SPI

- Supports both master and slave modes
- **Example 1** Frequency of up to ($f_{PCLK}/2$) MHz for the master mode and ($f_{PCLK}/3$) MHz for the slave mode
- FIFO Depth: 8 levels
- Multi-master and multi-slave operation

The Serial Peripheral Interface, SPI, provides a SPI protocol data transmit and receive function in both master and slave modes. The SPI interface uses 4 pins, which are the serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried out in a similar way but in a reverse sequence. The mode fault detection provides a capability for multi-master applications.

Universal Synchronous Asynchronous Receiver Transmitter – USART

- ▆ Supports both asynchronous and clocked synchronous serial communication modes
- **Programmable baud rate clock frequency up to (** $f_{PCLK}/16$ **) MHz for Asynchronous mode and** $(f_{PCLK}/8)$ MHz for synchronous mode
- \blacksquare Full duplex communication
- \blacksquare Fully programmable serial communication characteristics including
	- Word length: 7, 8 or 9-bit character
	- Parity: Even, odd or no-parity bit generation and detection
	- Stop bit: 1 or 2 stop bits generation
	- Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun and frame error
- \blacksquare Auto hardware flow control mode RTS, CTS
- IrDA SIR encoder and decoder
- RS485 mode with output enable control
- FIFO Depth: 8-level for both receiver and transmitter

The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The USART peripheral function supports four types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt and Time Out Interrupt. The USART module includes a transmitter FIFO (TX_FIFO) and receiver FIFO (RX_FIFO). The software can detect a USART error status by reading the USART Status & Interrupt Flag Register, USRSIFR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

Universal Asynchronous Receiver Transmitter – UART

- Asynchronous serial communication operating baud-rate clock frequency up to $(f_{PCLK}/16)$ MHz
- \blacksquare Full duplex communication
- Fully programmable serial communication characteristics including
	- Word length: 7, 8 or 9-bit character
	- Parity: Even, odd or no-parity bit generation and detection
	- Stop bit: 1 or 2 stop bits generation
	- Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun and frame error

The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The UART peripheral function supports Line Status Interrupt. The software can detect a UART error status by reading the UART Status & Interrupt Flag Register, URSIFR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

Cyclic Redundancy Check – CRC

- \blacksquare Supports CRC16 polynomial: 0x8005, $X^{16}+X^{15}+X^{2}+1$
- \blacksquare Supports CCITT CRC16 polynomial: 0x1021, $X^{16}+X^{12}+X^5+1$
- Supports IEEE-802.3 CRC32 polynomial: 0x04C11DB7, $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^8+X^7+X^5+X^4+X^2+X+1$
- \blacksquare Supports 1's complement, byte reverse & bit reverse operation on data and checksum
- \blacksquare Supports byte, half-word & word data size
- Programmable CRC initial seed value
- CRC computation executed in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32-bit data

The CRC calculation unit is an error detection technique test algorithm which is used to verify data transmission or storage data correctness. A CRC calculation takes a data stream or a block of data as its input and generates a 16-bit or 32-bit output remainder. Ordinarily, a data stream is suffixed by a CRC code and used as a checksum when being sent or stored. Therefore, the received or restored data stream is calculated by the same generator polynomial as described above. If the new CRC code result does not match the one calculated earlier, that means the data stream contains a data error.

Individual Cell Voltage Monitor

- Integrated voltage regulator with 5 V / 50 mA and \pm 1 % accuracy
- \blacksquare Individual cell voltage monitor outputs 1/2 of battery cell voltage, when the analog output is 2.1 V, it has an accuracy of \pm 7.5 mV
- **Example At T_A** = -40 °C ~ 85 °C, 2.5 V reference voltage output with a maximum variation of 15 mV in temperature drift
- \blacksquare Internal cell charging balance switches
- Two Discharge N-type MOSFET gate drivers
- Single Charge N-type MOSFET gate driver
- Charge/Discharge differential OPA current monitor
	- IMON outputs amplified ISP-ISN differential voltage
	- Voltage amplifying rate selection: 10/50
- Discharge short-current detection
	- Detection threshold voltage selection: 50 mV / 100 mV / 150 mV / 200 mV / 250 mV / 300 mV / 350 mV / 400 mV
	- Detection debounce time selection: 0 μs \sim 99 2μs, 32 sections, 32 μs per section
- Integrated Over-temperature protection selection: 85 °C / 100 °C / 125 °C / 150 °C
- \blacksquare Sleep mode with 0.1 μA ultra-low standby current
- Two High-voltage wake-up functions

Debug Support

- \blacksquare Serial Wire Debug Port SW-DP
- \blacksquare 4 comparators for hardware breakpoint or code / literal patch
- \Box 2 comparators for hardware watch points

Package and Operation Temperature

- \blacksquare 64-pin LQFP-EP package
- \blacksquare Operation temperature range: -40 °C to 85 °C

3 Overview

Device Information

Table 1. Features and Peripheral List

Note: The functions listed here, except the Individual Cell Voltage Monitor, are compatible with the HT32F50241 device. Refer to the HT32F50231/HT32F50241 user manual for detailed functional description.

Block Diagram

Memory Map

Table 2. Register Map

Clock Structure

Individual Cell Voltage Monitor

The cell voltage monitor is designed to monitor each battery cell voltage individually and outputs the divide-by-2 voltage to the analog multiplexer. When the analog output is 2.1 V, it has an accuracy of \pm 7.5 mV. When the analog output is 4.2 V, it has an accuracy of \pm 15 mV. Each monitor cell voltage from pin VBAT1 \sim VBAT8 can be observed sequentially and measured by using the internal A/D converter, which is only required to internal connect the VOUT pin to the A/D converter channels. The device has a 2.5 V reference voltage output, V_{REFO} , which provides the reference voltage V_{REF} for the A/D converter.

The current monitor channel provide charge and discharge current monitoring and short-current protection. The device can directly drive external N-type MOSFETs to control charge and discharge by charge and discharge gate drivers. The internal battery balance circuitry provides a cell balance current without the need of external transistors.

An integrated 5 V regulator provides a 5 V supply to the device with a 50 mA driving current capability and which has ± 1 % accuracy. The voltage regulator, cell voltage monitor, current monitors, and gate drivers are shut down with an ultra-low standby current 0.1 μA when the monitor is in the Sleep mode. When the HVWK1 or HVWK2 pin is triggered by a voltage greater than its threshold, the device will return to the normal operating status.

I 2 C Serial Interface

The Individual Cell Voltage Monitor supports I^2C serial interface. The I^2C bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines are open-drain structure and two pull-high resistors are required. When the bus is free, both lines are high. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the Wired-AND function. Data transfer is initiated only when the bus is not busy.

Data Validity

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low.

Figure 5. Data Validity

START and STOP

- (1) A high to low signal transition on the SDA data line while SCL is high defines a START (S)
- (2) A low to high signal transition on the SDA data line while SCL is high defines a STOP (P)
- (3) START and STOP are always generated by the master. The bus is considered to be busy after the START. The bus is considered to be free again a certain time after the STOP.
- (4) The bus stays busy if a REPEATED START (Sr) is generated instead of a STOP. In the respect, the START and REPEATED START are functionally identical.

Byte Format

Every byte put on the SDA data line signal must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

Acknowledge

- (1) Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, the master generates an extra acknowledge related clock pulse.
- (2) A slave receiver which is addressed must generate an Acknowledge response signal after the reception of each byte.
- (3) The device that provides an acknowledge must pull down the SDA data line signal during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse.
- (4) A master receiver must signal an end of data to the slave by generating a NOT Acknowledge response signal on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9th pulse to not acknowledge. The master will generate a STOP or Repeated START.

Figure 8. Acknowledge

I 2 C Time-out Control

In order to reduce the I²C lockup problem due to reception of erroneous clock sources, a time-out function is provided. The I²C time-out function starts timing for the specified I²C time-out period (t_{OUT}) when receiving START (S) from I²C bus. The timer is reset by every falling edge of SCL data line signal and gets interrupted when receiving STOP (P). If the next falling edge of SCL data line signal or STOP (P) does not appear throughout the $I²C$ time-out period (t_{OUT}), SDA and SCL data line signals are set to default states at the end of timing and meanwhile the registers remains unchanged. The $I²C$ time-out is set to 32 ms by default.

Slave Address

- (1) The slave address byte is the first byte received following the START condition from the master device. The first seven bits of the first byte make up the slave address. The eighth bit defines a read or write operation to be performed. When R/W bit is '1', then a READ operation is selected. When R/W bit is '0', it selects WRITE operation.
- (2) The slave address is "1011101". When an address byte is sent, the device compares the first seven bits after the START condition. If they match, the device outputs an Acknowledge on the SDA data line signal.

Figure 9. Slave Address

Write Operation

An I²C write operation combines a START bit, a Slave address byte with a Write bit, a Register address byte, single or multiple Data bytes, and a STOP bit.

Read Sequence

The complete read mode consists of two stages. 1st stage: writes in the Register Address Byte to the slave. 2nd state: reads out the single or multiple Data Bytes from the slave.

Figure 11. Read Sequence

Individual Cell Voltage Monitor I²C Register Map

The Individual Cell Voltage Monitor I²C register bit map is listed below.

● **Sleep, Reference Voltage, Charge Pump and Voltage Monitor Control Register (00H)**

Bit $7 \sim 6$ **SLP1** \sim **SLP0**: Sleep mode enable control

SLP ₁	SLP0	Action
		Normal operation
		Enter sleep mode
		Normal operation
		Normal operation

*To avoid voltage drop caused by balance current, the cell balance function must be turned off during the voltage monitoring.

● **Cell Balance Control Register (01H)**

● **Current Monitor Setting Register (02H)**

Bit $4 \sim 0$ Reserved bits, these bits should be kept unchanged after power-on

● **Short-Current Detection Setting 1 Register (03H)**

Bit $7 \sim 6$ **ISCE1** ~ **ISCE0**: Enable short-current detection

Bit $5 \sim 3$ Reserved bits, these bits should be kept unchanged after power-on

Bit $2 \sim 0$ **SC_2 ~ SC_0**: Select the short-current detection threshold voltage (V_{SCTH}) of short-current detection

● **Short-Current Detection Setting 2 Register (04H)**

Bit $7 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on

Bit $4 \sim 0$ **TD_4 ~ TD_0**: Select the debounce time of short-current detection

● **Short-Current Detection Control Register (05H)**

Bit $7 \sim 3$ Reserved bits, these bits should be kept unchanged after power-on

- Bit 0 **IS ACT DGN0**: Control actions of DGN0 when short-current event is detected IS ACT DGN0 can be written only when $V_{DN0} = 0$ V.
	- 0: Remain present output status of DGN0 when short-current event is detected
	- 1: Shut down and lock the output of DGN0 when short-current event is detected
	- The locked output of DGN0 is released by the falling edge of DN0 input signal.

- 0: Disable Over-temperature detection
	- 1: Enable Over-temperature detection
- Bit $6 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on
- Bit 4 **OTD_ACT**: Control action of cell balance when internal over-temperature event is detected 0: Remain present turn-on status of cell balance when internal over-temperature event is detected
	- 1: Turn off and lock all cell balance switches when internal over-temperature event is detected

The locked switches of cell balance can only turn on the cell balance function again after resetting the cell balance control register $CB[8:1] = 0x00$.

- Bit $3 \sim 2$ Reserved bits, these bits should be kept unchanged after power-on
- Bit $1 \sim 0$ **OTDTH1** ~ **OTDTH0**: Select the over-temperature detection threshold

● **Chip Status Register (07H)**

1: DGN0 output status is on $(V_{\text{DGN0}} = V_Z)$

1: Short-current event is happening at Short-current detection ($V_{ISP} > V_{SCTH}$)

● **Interrupt Flag Register (09H)**

Cell Voltage Monitor

B2, B1 and B0 are used to control the switches SW1 \sim SW8 only if EN_S = '1'. The control truth table is shown below. It transfers 1/2 of each battery cell's voltage to VOUT. It's recommended that to keep $EN_S = '0'$ when voltage scanning procedure is finish for power saving.

Cell Balance

Multiple channels of cell balance switch can be turned on via I²C interface. The register command byte of cell balance function is 01H, and the BIT7 \sim BIT0 of Data byte correspond to the cell balance switch of each channel from SW8 to SW1, respectively. More than one switch can be turned on in the same time, but side-by-side cell balancing switches are recommended NOT to be turned on simultaneously to ensure equal balance current between each channel. After receiving turn on command, cell balance switch remains turned on until it is turned off by a '0' data or get a command of SLP0 = '1'. By setting OTD ACT = '1', when internal junction temperature exceeds T_{OTD} , all balance switched are turned off and locked automatically and cannot be turned on again until the locked states are released. All locked switches are released by setting $CB[8:1] = 0x00$.

The typical cell balance current is 10 mA at battery cell voltage 4.2 V with series resistance 100 Ω , and the balance current can be adjusted by series resistors R0 ~ R8. Note that for the reason of keeping voltage monitor accuracy, do not proceed voltage monitor while cell balance is activated.

Table 5. Cell Balance Switch Truth Table

Note: More than one switch can be turned On in the same time.

Current Monitor

A current monitor is fabricated for measuring battery discharge current. The current monitor with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. IMCE signal is the enable control of current monitor, and current monitors can be turned off by setting $IMCE = '0'$ for power saving purpose.

Current measurement is accomplished with placing current sensing resistors connected between ISP and ISN pins, and measure input voltage difference of these pins. The ISP pin level should be higher than the ISN pin level in discharge state for a wide discharge current sensing range. While there is no current on sensing resistor or ZERO = '1', IMON outputs a center voltage of 0.5 V (typ.). When ZERO pin is set to '0', voltage difference of $(V_{ISP} - V_{ISN})$ is multiplied by the gain of amplifier which is denoted as $G_{IM(R10)}$ for a gain of 10 or $G_{IM(R50)}$ for a gain of 50 and outputted to IMON. The IMON output voltage amplify rate (G_{IM}) is selected by IAR.

The current monitor allows to use one sense resistor for charge and discharge current sensing. In discharge state, the voltage of ISP pin is greater than the ISN pin, and the output voltage of IMON is in the range of 0.5 V (typ.) to 2.5 V (VREF). In charge state, the voltage of ISP pin is smaller ISN pin, and the output voltage of IMON is in the range of 0 V to 0.5 V (typ.). IMON output voltage V_{MON} is given by the following equation with the current sensing resistor R_s and its current I_s. The value of I_s is positive in discharge state and negative in charge state.

$$
V_{\text{IMON}}\,{=}\,I_{\text{S}}\,{\times}\,R_{\text{S}}\,{\times}\,G_{\text{IM}}\,{+}\,0.5
$$

Figure 13. Current Monitor Schematic Diagram

Short-current Detection

A short-current detection and protection circuit are fabricated for detecting loading short event. Short current detection with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. The ISCE signal is the enable control of short current protection, and short-current protection can be turned off by setting ISCE = '0' for power saving purpose. By means of comparing (V_{ISP} - V_{ISN}) to short-current detection threshold voltage (V_{SCH}), the exceeding current caused by loading shorted can be detected.

Sleep Mode

It is important not to confuse this Sleep mode with the SLEEP mode which is described in the "Power Management Control Unit" section of this datasheet.

When EXT_WK1 and EXT_WK2 signals are all '0' and receiving a sleep command from I²C master, it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. The I²C master will set the SLP1 and SLP0 signals according to register (00H) Bit $7 \sim 6$ to make the Individual Cell Voltage Monitor to enter the Sleep mode. During the sleep mode, all outputs are shut down and the capacitor of VREG is discharged through internal discharge resistor. The pre-regulator and high voltage wake-up circuit are the only blocks that are still working in the sleep mode and operates with an ultra-low standby current of 0.1 μA (typical).

When either the EXT_WK or EXT_WK2 signal is '1', the I²C master will set the SLP1 and SLP0 signals according to register (00H) Bit $7 \sim 6$ and abandon the sleep command until the EXT_WK and EXT_WK2 are cleared to '0'.

EXT_WK1 Status EXT_WK2 Status	Sleep Mode Status		
	According to I^2C master command or POR default value.		

Table 6. Sleep Mode Status Truth Table

Wake up from Sleep Mode

The HVWK1 and HVWK2 pins can be used for detecting charger plugged-in, switch turned on, or load connected events. When the Individual Cell Voltage Monitor is under the Sleep mode and the EXT_WK1 and EXT_WK2 signals are all '0', it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. On the contrary, if either EXT_WK1 or EXT_WK2 signal is '1', it indicates that a wake-up event has occurred. If it is detected that the HVWK1 or HVWK2 pin is triggered by a pulse with requiring at least 5.5 V voltage and 1ms width, the output of VREG will resume and the whole Individual Cell Voltage Monitor is ready for normal operation. The reference timing diagram of entering sleep mode and waked up is listed below.

Discharge Path, i.e., Low-side Power Switch Gate Driver

The DGN0 and DGN1 are fabricated in the chip as discharge switch controllers. The output voltage of DGN0 and DGN1 pins are both clamped at 12 V. A 370 k Ω pull-down resistor is integrated at discharge gate control input DN0 and DN1. While operating in Normal Operation or sleep mode, DGN0 and DGN1 are pulled down by 10 Ω resistors. The control logic and output status of DGN0 and DGN1 pins in each state are listed in the table below.

Table 8. DGN1 Control Logic and Output Status in Different Operating Modes

Charge Path, i.e., High-side Power Switch Gate Driver

A high-side power switch gate driver DGCN is provided as a charger switch controller. A charge pump circuit is fabricated to provide BAT or VCP voltage between the gate and source node of external charge power switch. When the DCN is'0', DGCN output low, the voltage level varies with the BAT pin. When the DCN is'1', DGCN output high, the voltage level varies with the VCP pin. A $370 \text{ k}\Omega$ pull-down resistor is integrated at the control input DCN.

Table 9. DCN Control Logic and DGCN Output Status

Over-temperature Detection

An over-temperature detection (OTD) is integrated in the Individual Cell Voltage Monitor to prevent from IC overheated while cell balance function is turned on. According to the setting of register (06 H), the over-temperature detection function is active when EN OTD = $'1'$ and any of the Cell Balance switch is turned on. When internal junction temperature $T_J > T_{\text{OTD}}$, OTD ST is set to '1' and OTD_FLG is triggered as '1' if OTD_MSK = '0'. OTD_ST goes to '0' when internal junction temperature drops under $(T_{OTD} - T_{HYS})$.

By setting OTD ACT = '1', when internal junction temperature exceeds T_{OTD} , all balance switched are turned off and locked automatically. All locked switches cannot be turned on again until they are released by setting CB $[8:1] = 0x00$.

VIN, VREG Capacitors

The VIN input capacitor C1 and VREG output capacitor C2 are 4.7 μF for better input noise filtering and output load transient behavior.

Figure 15. Input / output Capacitor Configuration

VIN_LDO Filter Recommendation

The input capacitor C1 for VIN LDO is used for lowering the input voltage ripple while the battery is supplying a highly inductive load in PWM mode. The recommanded value of VIN_LDO input capacitor C1 is 4.7 μ F. The input resistor R9 of VIN LDO is able to reduce the inrush current during battery assembly, and also it shares the heat on chip while VREG outputs a large current in normal operation mode. The recommanded value for VIN_LDO input resistor R9 differs from different battery cell number applications. The recommended resistance values of VIN_LDO input resistor R9 with different battery cell numbers and the corresponding VREG maximum output current are listed in the table below.

Figure 16. VIN R9 Configuration

Table 10. R9 Recommended Values for Different Cell Numbers

It is necessary to select an appropriate package for VIN_LDO input resistor (R9) in order to prevent it being damaged from overheated. The maximum power of the resistor is easily calculated by:

 $P_{R9.MAX} = (I_{REG})^2 \times R9$, where I_{REG} is the maximum VREG output current

It is recommended to choose the resistor package that its maximum rated power is greater than twice the $P_{\text{R9 MAX}}$.

VBAT1 ~ VBAT8 Protection and Balance Resistor Selection

The VBAT1 \sim VBAT8 represents the VBAT1 \sim VBAT8 pins. Series resistors RBn includes R1 \sim R8, which not only suppress inrush and noise spikes applied to I/O pins, they affect cell balance current as well. Larger resistance of $R1 \sim R8$ provide better protection to VBAT1 \sim VBAT8 and other I/O pins, but they lower the cell balance current instead. The cell balance current of each channel is configured by internal balance resistors and external series resistors. Because the balance current of Cell 1 flows out through the GND pin while using the standard version product, the balance current of Cell 1 is greater than that of other cells. Considering inrush spike protection to I/O pins and noise reduction of voltage monitor, the recommended typical values of resistor R0 ~ R8 are 100 Ω, and the charge balancing current I_{CB} is 10 mA while the voltage of battery cell is 4.2 V. If larger balancing current is needed, the recommended minimum values of resistors R1 \sim R8 are 30 Ω which provide 23 mA while the voltage VBn of each cell is 4.2 V. To ensure the internal balance circuit works

properly, the minimum battery cell voltage to start the balance function is 3 V. The recommended VBAT1 ~ VBAT8 series resistors and their related charge balancing current are listed in the table below.

Table 11. R0 ~ R8 Recommended Values for Different Balance Current

Figure 18. Balanced Current VS Balanced Voltage

Increase Charging Balance Current

Refer to the following application circuits, when cell balance is turned on internally, the R1 will generate a voltage drop to make transistor Q1 conductive. Set the $V_{BI} = 4.2$ V, R1 = R4 = R2 = 100 R, balanced current (IC) is 150 mA, it is recommended Q1 to choose NPN transient HFE ≥ 85 , V_{CE(sat)} \leq 0.1 V, V_{BE (sat)} \approx 0.7 V, and calculate R3 according to the following formula:

1. R3 = $(V_{B1} - V_{CE(sat)}) / IC$

2. R3 selects resistance watts based on the calculation result

 $P_D = ((V_{B1} - V_{CE(sat)})^2) / R_3$

Figure 19. External Balanced Application Circuit

Figure 20. Alance Current VS VB1

Charger and Switch Status Detection

The High-voltage wake-up function HVWK1 and HVWK2 pins are capable of detecting charger plugged in or load switched On. The recommended wake-up function external circuit is listed below. When a charger is plugged in or load switch is on, the voltage of HVWK1 is triggered to be larger than V_{WKTH} and set EXT_WK1 signal as '1'. After the charger or switch is removed or turned off, EXT_WK1 signal is reset to '0'. An device can acquire the charger or switch status by read EXT_WK1 signal through the I2 C interface. Therefore, by means of reading the EXT_WK1 or EXT WK2 signal status, additional charger or switch detection circuit for device are not necessary. The circuit below is typical application for high-voltage wake-up function and optional circuit for charger plugged-in detection while SW is ON.

If independent charger and switch detection is required, an optional circuit for charger plugged-in detection is recommended. With this optional circuit, device can independently detect charger plugged-in event and start battery charge procedure.

Figure 21. Charger and Switch Status Detection

Voltage Spike Suppression Method

Figure 22. Simplified Typical BMS System Discharge Path Diagram

Most battery-management systems would monitor charge and discharge current to prevent over-current damage. Due to the parasitic inductance on conducting wires and PCB layout connections, large voltage spike may occurs while the controlled MOS rapidly shuts down the charge or discharge current, and this spike may damage the device VBAT1 \sim VBAT8 or VIN pins. Any voltage spike on VBAT1 \sim VBAT8 and VIN pins should not over the limitation in Absolute Maximum Ratings, which is 48 V. Four recommended measures listed below would help to reduce the voltage spike.

- 1. Make the external conducting wire and PCB layout connections as short as possible where large charge or discharge current flows.
- 2. Adjust the slew rate of MOS switch with the gate resistor R_G . Turn off the MOS with slower slew rate for lower voltage spike, and the tradeoff is a slower protection response time.
- 3. Add a capacitor (C_{DS}) between drain and source node of the MOS switch as shown above. The recommended capacitance is 0.1 μF to 0.22 μF.
- 4. Add a 39 V Zener diode between the highest voltage potential node of battery cells and GND.

Thermal Considerations

The maximum power dissipation depends upon the thermal resistance of the product package, PCB layout, rate of surrounding airflow and difference between the junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$
P_{\mathrm{D}(MAX)} = \left(T_{\mathrm{J}(MAX)} - T_{\mathrm{A}}\right) / \ \theta_{\mathrm{JA}}\text{(W)}
$$

Where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature and θ_{JA} is the junction-to-ambient thermal resistance of the product package.

For maximum operating rating conditions, the maximum junction temperature is 125 °C. However, it is recommended that the maximum junction temperature does not exceed 125 °C during normal operation to maintain high reliability. The de-rating curve of the maximum power dissipation is show below:

$$
P_{D(MAX)} = (125 \text{ °C} - 25 \text{ °C}) / (56 \text{ °C/W}) = 1.785 \text{ W}
$$

Maximum Power Dissipation (W)

Maximum Power Dissipation (W)

HOLT

www.holtek.cor

0 25 50 75 **85** 100 125

Ambient Temperature (°C)

For a fixed $T_{J(MAX)}$ of 125 °C, the maximum power dissipation depends upon the operating ambient temperature and the package's thermal resistance, θ_{JA} . The de-rating curve below shows the effect of rising ambient temperature on the maximum recommended power dissipation.

Figure 23. Derating Curve

Pin Assignment

Table 12. Pin Assignment

L

 $\overline{}$

Note: 1. The EP is meant the exposed pad of the LQFP-EP package. The EP VSS pin is internally connected to pin 19 and needs to be externally connected to the GND pin.

2. The Individual Cell Voltage Monitor output VOUT is bonded together internally with PA2.

Table 13. Pin Description

Note: 1. I = input, O = output, A = Analog port, P = power supply, $V_{DD} = V_{DD}$ Power.

2. 5V = 5 V operation I/O type, PU = Pull-up.

3. These pins are located at the V_{DD} power domain.

4. In the Boot loader mode, the USART interface is available for communication.

Interconnection Signal Description

The MCU generated signals such as the PWM1 channel output and GPTM channel output have been internally connected to the Individual Cell Voltage Monitor for control purpose. The connections are listed in the following table and the related control registers should be configured correctly using application program.

Table 14. Internal Connection Signal Lines

Note: Internal pull down with 370 kΩ.

6 Electrical Characteristics

Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 15. Absolute Maximum Ratings

Symbol	Value	Unit
V_{DD}	(Vss-0.3) to (Vss+5.5)	V
V _{DDIO}	$(Vss-0.3)$ to $(Vss+5.5)$	\vee
Input Voltage	(Vss-0.3) to $(V_{DD}+0.3)$	\vee
T_A	-40 to 85	$^{\circ}$ C
T _{STG}	-60 to 150	$^{\circ}C$
$T_{\rm J}$	< 125	$^{\circ}C$
P_D	< 500	mW
VIN, VIN LDO, HVWK1, HVWK2, BAT	-0.3 to 48	V
DGCN, VCP	-0.3 to 60	\vee
DGN0, DGN1	-0.3 to 18	\vee
VREG, VOUT, ISP, ISN, IMON, INTB, VREFO	-0.3 to 5.5	\vee
Δ [VBATi ~ VBAT(i-1)], i=8~1	-0.3 to 5.5	\vee
Electrostatic Discharge Voltage (Human Body Model)	-2000 to 2000	\vee

Recommended DC Operating Conditions

Table 16. Recommended DC Operating Conditions

 T_A = 25 °C, unless otherwise specified.

Recommended Operating Ratings

Table 17. Recommended Operating Ratings

Note: Recommended Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specified performance limits.

 T_A = 25 °C, unless otherwise specified.

 T_A = 25 °C, unless otherwise specified.

On-Chip LDO Voltage Regulator Characteristics

Table 18. LDO Characteristics

Power Consumption

Table 19. Power Consumption Characteristics

Note: 1. HSE means high speed external oscillator. HSI means 20 MHz high speed internal oscillator.

2. LSE means 32.768 kHz low speed external oscillator. LSI means 32 kHz low speed internal oscillator.

3. RTC means Real-Time clock.

4. Code = while (1) {208 NOP} executed in Flash.

5. f_{BUS} means f_{HCLK} and f_{PCLK} .

Reset and Supply Monitor Characteristics

Table 20. V_{DD} Power Reset Characteristics

Note: 1. Data based on characterization results only, not tested in production.

2. If the LDO is turned on, the V_{DD} POR has to be in the de-assertion condition. When the V_{DD} POR is in the assertion state then the LDO will be turned off.

Table 21. LVD/BOD Characteristics

 T_A = 25 °C, unless otherwise specified.

Note: 1. Data based on characterization results only, not tested in production.

2. Bandgap current is not included.

3. LVDS field is in the PWRCU LVDCSR register.

External Clock Characteristics

Table 22. High Speed External Clock (HSE) Characteristics

Table 23. Low Speed External Clock (LSE) Characteristics

 T_A = 25 °C, unless otherwise specified.

Note: The following guidelines are recommended to increase the stability of the crystal circuit of the HSE / LSE clock in the PCB layout:

1. The crystal oscillator should be located as close as possible to the MCU to keep the trace lengths as short as possible to reduce any parasitic capacitance.

2. Shield lines in the vicinity of the crystal by using a ground plane to isolate signals and reduce noise.

3. Keep any high frequency signal lines away from the crystal area to prevent any crosstalk adverse effects.

Internal Clock Characteristics

Table 24. High Speed Internal Clock (HSI) Characteristics

Table 25. Low Speed Internal Clock (LSI) Characteristics

Memory Characteristics

Table 26. Flash Memory Characteristics

T_A = 25 °C, unless otherwise specified.

I/O Port Characteristics

Table 27. I/O Port Characteristics

ADC Characteristics

Table 28. ADC Characteristics

Note: 1. Data based on characterization results only, not tested in production.

- 2. Due to the A/D Converter input channel and GPIO pin-shared function design limitation, the V_{DDA} supply power of the A/D Converter has to be equal to the V_{DD} supply power of the MCU in the application circuit.
- 3. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where C_1 is the storage capacitor, $R₁$ is the resistance of the sampling switch and R_S is the output impedance of the signal source V_s . Normally the sampling phase duration is approximately, $3.5/f_{ADC}$. The capacitance, C_I, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to V_s for accuracy. To guarantee this, R_s is not allowed to have an arbitrarily large value.

Figure 25. ADC Sampling Network Model

The worst case occurs when the extremities of the input range $(0 \text{ V and } V_{REF})$ are sampled consecutively. In this situation a sampling error below 1/4 LSB is ensured by using the following equation:

$$
R_S \leq \frac{3.5}{f_{ADC}C_1 ln(2^{N+2})} - R_I
$$

Where f_{ADC} is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model.

If, in a system where the A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, R_s may be larger than the value indicated by the equation above.

MCTM/GPTM/PWM Characteristics

Table 29. MCTM/GPTM/PWM Characteristics

Individual Cell Voltage Monitor Electrical Characteristics

Table 30. Individual Cell Voltage Monitor Electrical Characteristics

 V_{IN} = 36 V, C_{REG} = 4.7 µF, T_A = 25 °C, unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit			
Supply and Input									
V_{IN}	Supply Voltage		7.5		36	V			
I _{IN(STB)}	Supply Current (Standby)	$EN S = EN VREF = IMCE =$ $ISCE = '0', EN_OTD = '0',$ $DNA = DNA = DCN = '0'$		3.5	6	μA			
I _{IN} (STB DSG)	VIN Supply Current with DGN0 and Short Current Detection is Activated	$EN S = EN VREF = IMCE =$ EN OTD = '0', $ISCE = '1'$, $DNA = '1', DNA = DCN = '0'$		18	20	μA			
IOPR DGNX	VIN Operating Current when DGN0 and DGN1 Outputs are On	$DNA = DNA = '1', DCN = '0'$		15		μA			
I_{SLP}	Standby Current in SLEEP Mode	$SLP1 = '0'$, $SLP0 = '1'$, $V_{HVWK} = 0 V$		0.1	0.2	μA			
Voltage Regulator									
V _{REFO}	Regulator Output Voltage	I_{LOAD} = 10 mA	4.95	5	5.05	\vee			
I_{REG}	Regulator Maximum Output Cur- rent	V_{IN} = 7.5 V, T _A = - 40 ~ 85 °C	50			mA			
ΔV_{REG}	Load Regulation	$I_{\text{LOAD}} = 0 \sim 50 \text{ mA}$			50	mV			
ΔV_{REG} $(V_{REG} \times \Delta V_{IN})$	Line Regulation	V_{IN} = 7.5 ~ 36 V, I_{LOAD} = 10 mA		0.02		%N			
ΔV_{REG} $(V_{REG} \times \Delta T_A)$	V _{REG} Temperature Coefficient	I_{LOAD} = 1 mA, T _A = -40 ~ 85°C		±100		ppm/ °C			

Note: These parameters are periodically sampled but not 100% tested.

 \bullet

Individual Cell Voltage Monitor I2 C Interface Characteristic

Table 32. Individual Cell Voltage Monitor I2 C Interface Characteristic

 V_{IN} = 36 V and T_A = 25°C, unless otherwise specified

Note: These parameters are periodically sampled but not 100% tested.

Figure 27. Individual Cell Voltage Monitor I2 C Timing Diagram

I 2 C Characteristics

Table 33. I 2 C Characteristics

Note: 1. Data based on characterization results only, not tested in production.

2. To achieve 100 kHz standard mode, the peripheral clock frequency must be higher than 2 MHz.

3. To achieve 400 kHz fast mode, the peripheral clock frequency must be higher than 8 MHz.

4. To achieve 1 MHz fast mode plus, the peripheral clock frequency must be higher than 20 MHz.

5. The above characteristic parameters of the I²C bus timing are based on: COMBFILTEREN = 0 and SEQFILTER = 00.

6. The above characteristic parameters of the I ^2C bus timing are based on: <code>COMBFILTEREN</code> = 1 and SEQFILTER = 00.

SPI Characteristics

Table 34. SPI Characteristics

Note: 1. f_{SCK} is SPI output/input clock frequency and t_{SCK} = 1/ f_{SCK} .

2. f_{PCLK} is SPI peripheral clock frequency and t_{PCLK} = 1/ f_{PCLK} .

Figure 29. SPI Timing Diagrams – SPI Master Mode

Figure 30. SPI Timing Diagrams – SPI Slave Mode with CPHA=1

7 Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the [Holtek website](https://www.holtek.com/en/) for the latest version of the [Package Information](https://www.holtek.com/en/package_carton_information).

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

64-pin LQFP-EP (7mm × 7mm) Outline Dimensions

Copyright© 2024 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.