

HT32F61730 Datasheet

32-Bit Arm[®] Cortex[®]-M0+ BMS Microcontroller, 32 KB Flash and 2 KB SRAM with Individual Cell Voltage Monitor, 500 ksps ADC, UART, SPI, I²C, SCTM, BFTM, LEDC, RTC and WDT

Revision: V1.00 Date: April 23, 2024

www.holtek.com

Table of Contents

1	General Description	. 6
2	Features	. 7
	Core	7
	On-Chip Memory	7
	Flash Memory Controller – FMC	. 7
	Reset Control Unit – RSTCU	7
	Clock Control Unit – CKCU	. 8
	Power Management Control Unit – PWRCU	. 8
	External Interrupt / Event Controller – EXTI	. 8
	Analog to Digital Converter – ADC	. 8
	I/O Ports – GPIO	. 9
	Single-Channel Timer – SCTM	. 9
	Basic Function Timer – BFTM	
	Watchdog Timer – WDT	10
	Real-Time Clock – RTC	
	Inter-integrated Circuit – I ² C	10
	Serial Peripheral Interface – SPI	
	Universal Asynchronous Receiver Transmitter – UART	
	LED Controller – LEDC	
	Individual Cell Voltage Monitor	
	Debug Support	
	Package and Operation Temperature	12
3	Overview	13
	Device Information	13
	Block Diagram	14
	Memory Map	15
	Clock Structure	17
4	Individual Cell Voltage Monitor	18
	I ² C Serial Interface	
	Individual Cell Voltage Monitor I ² C Register Map	
	Cell Voltage Monitor	
	Cell Balance	
	Current Monitor	
	Short-current Detection	
	Sleep Mode	
	Wake up from Sleep Mode	

	Discharge Path, i.e., Low-side Power Switch Gate Driver	34
	Charge Path, i.e., High-side Power Switch Gate Driver	
	Over-temperature Detection	
	VIN, VREG Capacitors	
	VIN LDO Filter Recommendation	
	VBAT1 ~ VBAT8 Protection and Balance Resistor Selection	
	Increase Charging Balance Current	
	Charger and Switch Status Detection	
	Voltage Spike Suppression Method	
	Thermal Considerations	
		. 40
5	Pin Assignment	42
	Interconnection Signal Description	. 47
c	Electrical Characteristics	40
0		
	Absolute Maximum Ratings	
	Recommended DC Operating Conditions	
	Recommended Operating Ratings	
	On-Chip LDO Voltage Regulator Characteristics	
	Power Consumption	
	Reset and Supply Monitor Characteristics	
	External Clock Characteristics	
	Internal Clock Characteristics	
	Memory Characteristics	
	I/O Port Characteristics	
	ADC Characteristics	
	Internal Reference Voltage Characteristics	
	SCTM Characteristics	
	Individual Cell Voltage Monitor Electrical Characteristics	. 56
	Individual Cell Voltage Monitor I ² C Interface Characteristic	
	I ² C Characteristics	. 61
	SPI Characteristics	. 62
7	Package Information	64
	64-pin LQFP-EP (7mm × 7mm) Outline Dimensions	

List of Tables

Table 1. Features and Peripheral List	13
Table 2. Register Map	16
Table 3. Individual Cell Voltage Monitor I ² C Register Map	23
Table 4. Cell Voltage Monitor Truth Table	30
Table 5. Cell Balance Switch Truth Table	32
Table 6. Sleep Mode Status Truth Table	33
Table 7. DGN0 Control Logic and Output Status in Different Operating Modes	34
Table 8. DGN1 Control Logic and Output Status in Different Operating Modes	
Table 9. DCN Control Logic and DGCN Output Status	35
Table 10. R9 Recommended Values for Different Cell Numbers	36
Table 11. R0 ~ R8 Recommended Values for Different Balance Current	37
Table 12. Pin Assignment	43
Table 13. Pin Description	45
Table 14. Internal Connection Signal Lines	47
Table 15. Absolute Maximum Ratings	48
Table 16. Recommended DC Operating Conditions	48
Table 17. Table xx. Recommended Operating Ratings	48
Table 18. LDO Characteristics	49
Table 19. Power Consumption Characteristics	49
Table 20. V _{DD} Power Reset Characteristics	50
Table 21. LVD / BOD Characteristics	50
Table 22. High Speed External Clock (HSE) Characteristics	50
Table 23. Low Speed External Clock (LSE) Characteristics	51
Table 24. High Speed Internal Clock (HSI) Characteristics	52
Table 25. Low Speed Internal Clock (LSI) Characteristics	52
Table 26. Flash Memory Characteristics	52
Table 27. I/O Port Characteristics	53
Table 28. ADC Characteristics	54
Table 29. Internal Reference Voltage Characteristics	55
Table 30. SCTM Characteristics	55
Table 31. Individual Cell Voltage Monitor Electrical Characteristics	56
Table 32. Individual Cell Voltage Monitor Electrical Characteristics (ISP-ISN Shunt Resistor = $5 \text{ m}\Omega$)	59
Table 33. Individual Cell Voltage Monitor I ² C Interface Characteristic	60
Table 34. I ² C Characteristics	61
Table 35. SPI Characteristics	62

List of Figures

Figure 1. Block Diagram	. 14
Figure 2. Memory Map	. 15
Figure 3. Clock Structure	. 17
Figure 4. Individual Cell Voltage Monitor Block Diagram	. 19
Figure 5. Data Validity	. 20
Figure 6. START and STOP	. 20
Figure 7. Byte Format	. 21
Figure 8. Acknowledge	. 21
Figure 9. Slave Address	. 22
Figure 10. Write Operation	. 22
Figure 11. Read Sequence	. 23
Figure 12. Cell Balance Application Schematic Diagram	. 31
Figure 13. Current Monitor Schematic Diagram	. 32
Figure 14. Sleep Mode Wake-up Sequence	. 34
Figure 15. Input / output Capacitor Configuration	. 35
Figure 16. VIN R9 Configuration	. 36
Figure 17. VBAT1 ~ VBAT8 Protection and Balance Resistors	. 37
Figure 18. Balanced Current VS Balanced Voltage	. 37
Figure 19. External Balanced Application Circuit	. 38
Figure 20. Alance Current VS V _{B1}	38
Figure 21. Charger and Switch Status Detection	. 39
Figure 22. Simplified Typical BMS System Discharge Path Diagram	. 40
Figure 23. Derating Curve	. 41
Figure 24. 64-pin LQFP-EP Pin Assignment	. 42
Figure 25. ADC Sampling Network Model	. 54
Figure 26. Individual Cell Voltage Monitor Characteristics	. 58
Figure 27. Individual Cell Voltage Monitor I ² C Timing Diagram	. 61
Figure 28. I ² C Timing Diagram	62
	. 02
Figure 29. SPI Timing Diagram – SPI Master Mode	

1 General Description

The Holtek HT32F61730 device is a high performance, low power consumption 32-bit microcontroller based around an Arm[®] Cortex[®]-M0+ processor core. The Cortex[®]-M0+ is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer and including advanced debug support.

The device operates at a frequency of 16 MHz to obtain maximum efficiency. It provides 32 KB of embedded Flash memory for code/data storage and 2 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as ADC, I²C, UART, SPI, SCTM, BFTM, LEDC, RTC, WDT and SW-DP (Serial Wire Debug Port), etc., are also implemented in the device. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The device also has an individual cell voltage monitor module, a high accuracy voltage regulator, two discharge N-type MOSFET gate drivers and a charge N-type MOSFET gate driver, which is suitable for 3 to 8 rechargeable lithium batteries. The cell voltage monitor is designed to monitor each battery cell voltage individually and outputs the divide-by-2 voltage to the analog multiplexer with ± 7.5 mV accuracy when analog output is 2.1 V. After being selected by an analog multiplexer, the output voltage is directly connected to the internal A/D converter for measurement. The integrated high accuracy V_{REFO} is 2.5 V (maximum drift ± 15 mV). The internal gate drivers can directly drive external power N-type MOSFETs to control charge and discharge. It also has functions of differential amplifier to detect charge/discharge current, hardware discharge short-current protection and overtemperature protection and so on. The integrated battery balance circuitry provides a cell balance current without the need of external transistors.

The above features ensure that the device is suitable for use in a wide range of applications, especially in areas such as handheld measurement instruments, electric power tools, handheld hair dryers, handheld vacuum cleaners in addition to many others.

arm Cortex

2 Features

Core

- 32-bit Arm[®] Cortex[®]-M0+ processor core
- Up to 16 MHz operating frequency
- Single-cycle multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex[®]-M0+ processor is a very low gate count, highly energy efficient processor that is intended for microcontroller and deeply embedded applications that require an area optimized, low-power processor. The processor is based on the ARMv6-M architecture and supports Thumb[®] instruction sets, single-cycle I/O ports, hardware multiplier and low latency interrupt respond time.

On-Chip Memory

- 32 KB on-chip Flash memory for instruction/data and option byte storage
- 2 KB on-chip SRAM
- Supports multiple boot modes

The Arm[®] Cortex[®]-M0+ processor access and debug access share the single external interface to external AHB peripherals. The processor access takes priority over debug accesses. The maximum address range of the Cortex[®]-M0+ is 4 GB since it has a 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex[®]-M0+ processor to reduce the software complexity of repeated implementation by different device vendors. However, some regions are used by the Arm[®] Cortex[®]-M0+ system peripherals. Refer to the Arm[®] Cortex[®]-M0+ Technical Reference Manual for more information. Figure 2 in the Overview chapter shows the memory map of the device, including code, SRAM, peripheral and other pre-defined regions.

Flash Memory Controller – FMC

- 32-bit word programming with In System Programming (ISP) and In Application Programming (IAP)
- Flash protection capability to prevent illegal access

The Flash Memory Controller, FMC, provides all the necessary functions for the embedded on-chip Flash Memory. The word programming/page erase functions are also provided.

Reset Control Unit – RSTCU

- Supply supervisor
 - Power On Reset / Power Down Reset POR / PDR
 - Brown-out Detector BOD
 - Programmable Low Voltage Detector LVD

The Reset Control Unit, RSTCU, has three kinds of reset, a power on reset, a system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller. The resets can be triggered by external signals, internal events and the reset generators.

Clock Control Unit – CKCU

- External 4 to 16 MHz crystal oscillator
- External 32.768 kHz crystal oscillator
- Internal 16 MHz RC oscillator trimmed to ±1 % accuracy at 25 °C operating temperature
- Internal 32 kHz RC oscillator
- Independent clock divider and gating bits for peripheral clock sources

The Clock Control Unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), an HSE clock monitor, clock pre-scalers, clock multiplexers, APB clock divider and gating circuitry. The AHB, APB and Cortex[®]-M0+ clocks are derived from the system clock (CK_SYS) which can come from the HSI, HSE, LSI or LSE. The Watchdog Timer and Real-Time Clock (RTC) use either the LSI or LSE as their clock source.

Power Management Control Unit – PWRCU

- Single V_{DD} power supply: 2.5 V ~ 5.5 V
- Integrated 1.5 V LDO regulator for MCU core, peripherals and memories power supply
- **Two power domains:** V_{DD} and V_{CORE} power domains
- Three power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2

Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in the device provides many types of power saving modes such as Sleep, Deep-Sleep1 and Deep-Sleep2 modes. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption.

External Interrupt / Event Controller – EXTI

- Up to 8 EXTI lines with configurable trigger source and type
- All GPIO pins can be selected as EXTI trigger source
- Source trigger type includes high level, low level, negative edge, positive edge or both edges
- Individual interrupt enable, wakeup enable and status bits for each EXTI line
- Software interrupt trigger mode for each EXTI line
- Integrated deglitch filter for short pulse blocking

The External Interrupt/Event Controller, EXTI, comprises 8 edge detectors which can generate a wake-up event or interrupt requests independently. Each EXTI line can also be masked independently.

Analog to Digital Converter – ADC

- 12-bit SAR ADC engine
- Up to 500 ksps conversion rate
- Up to 7 external analog input channels

A 12-bit multi-channel Analog to Digital Converter is integrated in the device. There are multiplexed channels, which include 7 external analog signal channels and 2 internal channels which can be measured. There are two conversion modes to convert an analog signal to digital data. The A/D conversion can be operated in one shot and continuous conversion mode.

The internal voltage reference generator (VREF) which can provide a stable ADC reference positive voltage (ADCREFP) and the Band gap of VREF is internally connected to the ADC internal input channel. The precise voltage of the V_{REF} is individually measured for each part by Holtek during production test.

I/O Ports – GPIO

- Up to 23 GPIOs
- Port A, B, C are mapped as 8-line EXTI interrupts
- Almost all I/O pins have configurable output driving current

There are up to 23 General Purpose I/O pins, which for the implementation of logic input / output functions. Each of the GPIO ports has a series of related control and configuration registers to maximize flexibility and to meet the requirements of a wide range of applications.

The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI.

Single-Channel Timer – SCTM

- 16-bit auto-reload up-counter
- One channel for each timer
- 8-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 256 to generate the counter clock frequency
- One input Capture function
- Two compare Match Output
- PWM waveform generation with Edge-aligned counting Mode
- Single Pulse Mode Output

The Single Channel Timer Module, SCTM, consists of one 16-bit up-counter, one 16-bit Capture / Compare Register (CCR), one 16-bit Counter Reload Register (CRR) and several control / status registers. It can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as single pulse generation or PWM outputs.

Basic Function Timer – BFTM

- 16-bit compare match up-counter no I/O control
- One shot mode counter stops counting when compare match occurs
- Repetitive mode counter restarts when compare match occurs

The Basic Function Timer Module, BFTM, is a simple 16-bit up-counting counter designed to measure time intervals and generate one shots or generate repetitive interrupts. The BFTM can operate in two functional modes, repetitive and one shot modes. In the repetitive mode, the counter will restart at each compare match event. The BFTM also supports a one shot mode which will force the counter to stop counting when a compare match event occurs.

Watchdog Timer – WDT

- 12-bit down-counter with 3-bit prescaler
- Provides reset to the system
- Programmable watchdog timer window function
- Register write protection function

The Watchdog Timer is a hardware timing circuit that can be used to detect a system lock-up due to software trapped in a deadlock. It includes a 12-bit down-counter, a prescaler, a WDT delta value register, WDT operation control circuitry and a WDT protection mechanism. If the software does not reload the counter value before a Watchdog Timer underflow occurs, a reset will be generated when the counter underflows. In addition, a reset is also generated if the software reloads the counter before it reaches a delta value. It means that the counter reload must occur when the Watchdog timer value has a value within a limited window using a specific method. The Watchdog Timer counter can be stopped when the processor is in the debug mode. The register write protection function can be enabled to prevent an unexpected change in the Watchdog Timer configuration.

Real-Time Clock – RTC

- 24-bit up-counter with a programmable prescaler
- Alarm function
- Interrupt and Wake-up event

The Real-Time Clock, RTC, circuitry includes the APB interface, a 24-bit up-counter, a control register, a prescaler, a compare register and a status register. The RTC circuits are located in the V_{CORE} power domain. The RTC counter is used as a wakeup timer to generate a system resume or interrupt signal from the MCU power saving mode.

Inter-integrated Circuit – I²C

- Supports both master and slave modes with a frequency of up to 1 MHz
- Supports 7-bit addressing mode and general call addressing
- Supports two 7-bit slave addresses

The I²C module is an internal circuit allowing communication with an external I²C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I²C module provides three data transfer rates: 100 kHz in the Standard mode, 400 kHz in the Fast mode and 1 MHz in the Fast plus mode. The SCL period generation register is used to setup different kinds of duty cycle implementations for the SCL pulse.

The SDA line which is connected directly to the I²C bus is a bidirectional data line between the master and slave devices and is used for data transmission and reception.

Serial Peripheral Interface – SPI

- Supports both master and slave modes
- Frequency of up to $(f_{PCLK}/2)$ MHz for the master mode and $(f_{PCLK}/3)$ MHz for the slave mode
- Programmable data frame length up to 8 bits
- FIFO Depth: 4 levels

The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive function in both master and slave modes. The SPI interface uses 4 pins, among which are serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamlined data

bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried out in a similar way but in a reverse sequence.

Universal Asynchronous Receiver Transmitter – UART

- Asynchronous serial communication operating baud-rate clock frequency up to (f_{PCLK}/16) MHz
- Full duplex communication
- Fully programmable serial communication characteristics including:
 - Word length: 7, 8 or 9-bit character
 - Parity: Even, odd or no-parity bit generation and detection
 - Stop bit: 1 or 2 stop bits generation
 - Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun and frame error

The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The UART peripheral function supports Line Status Interrupt. The software can detect a UART error status by reading the UART Status & Interrupt Flag Register, URSIFR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

LED Controller – LEDC

- Supports 8-segment digital displays up to 4
- Supports 8-segment digital displays with common anode or common cathode
- Support frame interrupt
- Three clock sources: LSI, LSE and PCLK
- The LED light on/off times can be controlled using the dead time setting

The LED controller is used to drive 8-segment digital displays. This device can driver 8-segment digital displays up to 4. Users can flexibly configure the pin position and number of the COMs according to the digital displays in the application. In a complete frame period, the enabled COMs will be scanned from the lower to the higher. Taking an example of where four 8-segment LEDs are used and where COM0, COM1, COM2 and COM3 are enabled. Here COM0, COM1, COM2 and the COM3 will be scanned successively in this sequence within a complete frame period. The scanning time of each COM port is equal to 1/4 frame, which is subdivided into the dead time duty and the COM duty. Users can adjust the dead time duty to change the LED brightness.

Individual Cell Voltage Monitor

- \blacksquare Integrated voltage regulator with 5 V / 50 mA and ±1 % accuracy
- Individual cell voltage monitor outputs 1/2 of battery cell voltage, when the analog output is 2.1 V, it has an accuracy of ±7.5 mV
- At $T_A = -40$ °C ~ 85 °C, 2.5 V reference voltage output with a maximum variation of 15 mV in temperature drift
- Internal cell charging balance switches
- Two Discharge N-type MOSFET gate drivers
- Single Charge N-type MOSFET gate driver
- Charge/Discharge differential OPA current monitor
 - IMON outputs amplified ISP-ISN differential voltage
 - Voltage amplifying rate selection: 10 / 50

- Discharge short-current detection
 - \bullet Detection threshold voltage selection: 50 mV / 100 mV / 150 mV / 200 mV / 250 mV / 300 mV / 350 mV / 400 mV
 - Detection debounce time selection: $0 \ \mu s \sim 992 \ \mu s$, 32 sections, 32 μs per section
- Integrated Over-temperature protection selection: 85 °C / 100 °C / 125 °C / 150 °C
- Sleep mode with 0.1 µA ultra-low standby current
- Two High-voltage wake-up functions

Debug Support

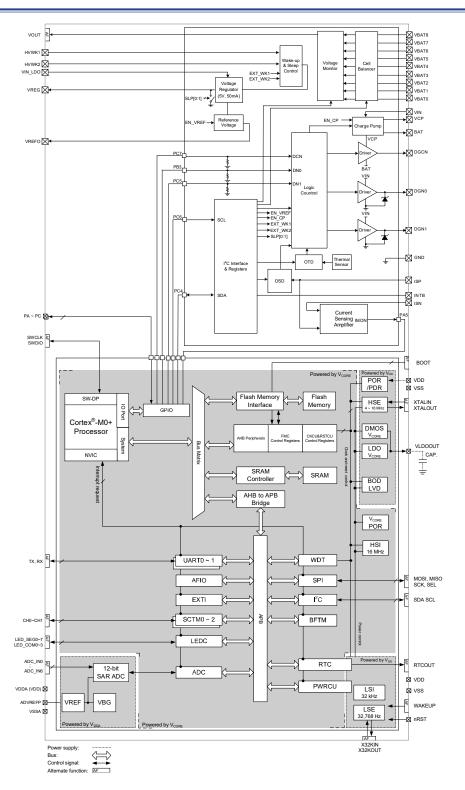
- Serial Wire Debug Port SW-DP
- 4 comparators for hardware breakpoint or code / literal patch
- 2 comparators for hardware watch points

Package and Operation Temperature

- 64-pin LQFP-EP package
- Operation temperature range: -40 °C to 85 °C

3 Overview

Device Information


Table 1. Features and Peripheral List

Periphe	rals	HT32F61730		
Main Flash (KB)		31		
Option Bytes Flash (KB)		1		
SRAM (KB)		2		
	SCTM	3		
Timers	BFTM	1		
TIMEIS	WDT	1		
	RTC	1		
	SPI	1		
Communication	UART	2		
	l ² C	1		
EXTI		8		
12-bit ADC		1		
Number of channels		7 Externa Channels		
GPIO		Up to 23		
LEDC		4 × 8-segment		
Individual Cell Voltage Mon	itor	1		
CPU frequency		Up to 16 MHz		
Operating voltage		2.5 V ~ 5.5 V		
Operating temperature		-40 °C ~ 85 °C		
Package		64-pin LQFP-EP		

Note: The functions listed here, except the Individual Cell Voltage Monitor, are compatible with the HT32F50030 device. Refer to the HT32F50020 / HT32F50030 user manual for detailed functional description.

Block Diagram

Memory Map

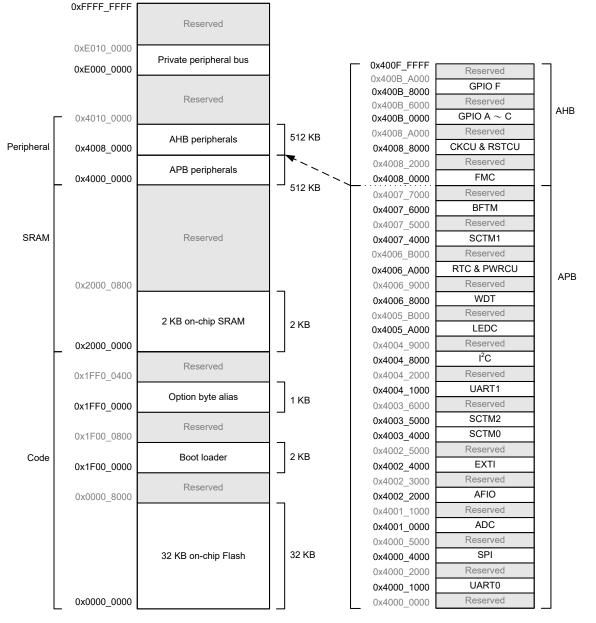


Figure 2. Memory Map

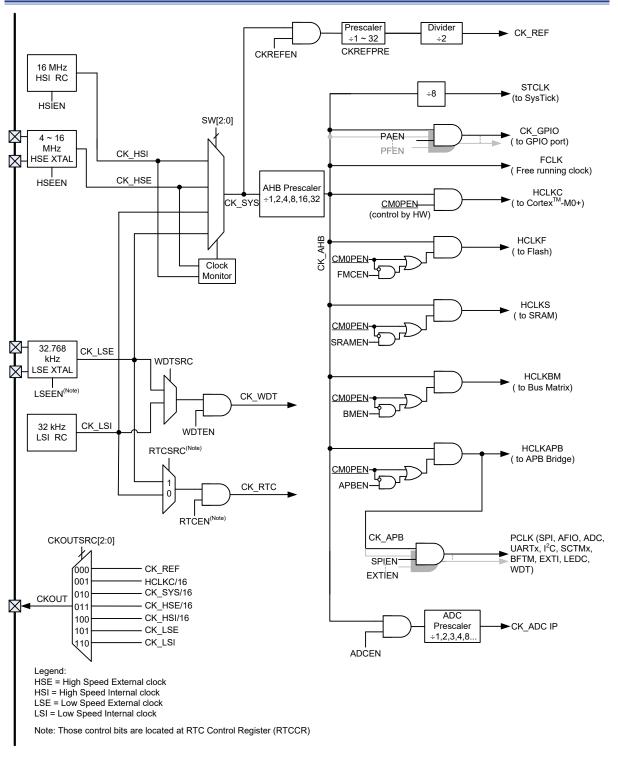
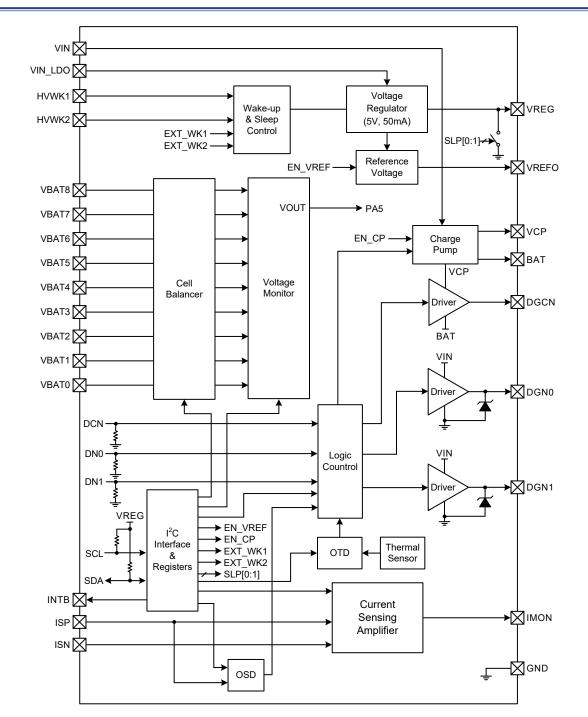


Table 2. Register Ma	р		
Start Address	End Address	Peripheral	Bus
0x4000_0000	0x4000_0FFF	Reserved	
0x4000_1000	0x4000_1FFF	UART0	
0x4000_2000	0x4000_3FFF	Reserved	
0x4000_4000	0x4000_4FFF	SPI	
0x4000_5000	0x4000_FFFF	Reserved	
0x4001_0000	0x4001_0FFF	ADC	
0x4001_1000	0x4002_1FFF	Reserved	
0x4002_2000	0x4002_2FFF	AFIO	
0x4002_3000	0x4002_3FFF	Reserved	
0x4002_4000	0x4002_4FFF	EXTI	
0x4002_5000	0x4003_3FFF	Reserved	
0x4003_4000	0x4003_4FFF	SCTM0	
0x4003_5000	0x4003_5FFF	SCTM2	
0x4003_6000	0x4004_0FFF	Reserved	APB
0x4004_1000	0x4004_1FFF	UART1	AFD
0x4004_2000	0x4004_7FFF	Reserved	
0x4004_8000	0x4004_8FFF	I ² C	
0x4004_9000	0x4005_9FFF	Reserved	
0x4005_A000	0x4005_AFFF	LEDC	
0x4005_B000	0x4006_7FFF	Reserved	
0x4006_8000	0x4006_8FFF	WDT	
0x4006_9000	0x4006_9FFF	Reserved	
0x4006_A000	0x4006_AFFF	RTC & PWRCU	
0x4006_B000	0x4007_3FFF	Reserved	
0x4007_4000	0x4007_4FFF	SCTM1	
0x4007_5000	0x4007_5FFF	Reserved	
0x4007_6000	0x4007_6FFF	BFTM	
0x4007_7000	0x4007_FFFF	Reserved	
0x4008_0000	0x4008_1FFF	FMC	
0x4008_2000	0x4008_7FFF	Reserved	
0x4008_8000	0x4008_9FFF	CKCU & RSTCU	
0x4008_A000	0x400A_FFFF	Reserved	
0x400B_0000	0x400B_1FFF	GPIO A	
0x400B_2000	0x400B_3FFF	GPIO B	AHB
0x400B_4000	0x400B_5FFF	GPIO C	
0x400B_6000	0x400B_7FFF	Reserved	
0x400B_8000	0x400B_9FFF	GPIO F	1
0x400B_A000	0x400F_FFFF	Reserved	1

Table 2 D agistor M

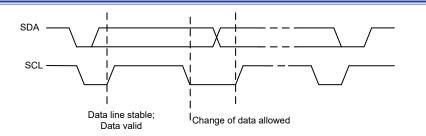
Clock Structure


4 Individual Cell Voltage Monitor

The cell voltage monitor is designed to monitor each battery cell voltage individually and outputs the divide-by-2 voltage to the analog multiplexer. When the analog output is 2.1 V, it has an accuracy of \pm 7.5 mV. When the analog output is 4.2 V, it has an accuracy of \pm 15 mV. Each monitor cell voltage from pin VBAT1 ~ VBAT8 can be observed sequentially and measured by using the internal A/D converter, which is only required to internal connect the VOUT pin to the A/D converter channels. The device has a 2.5 V reference voltage output, V_{REFO}, which provides the reference voltage V_{REF} for the A/D converter.

The current monitor channel provide charge and discharge current monitoring and short-current protection. The device can directly drive external N-type MOSFETs to control charge and discharge by charge and discharge gate drivers. The internal battery balance circuitry provides a cell balance current without the need of external transistors.

An integrated 5 V regulator provides a 5 V supply to the device with a 50 mA driving current capability and which has ± 1 % accuracy. The voltage regulator, cell voltage monitor, current monitors, and gate drivers are shut down with an ultra-low standby current 0.1 μ A when the monitor is in the Sleep mode. When the HVWK1 or HVWK2 pin is triggered by a voltage greater than its threshold, the device will return to the normal operating status.



I²C Serial Interface

The Individual Cell Voltage Monitor supports I^2C serial interface. The I^2C bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines are open-drain structure and two pull-high resistors are required. When the bus is free, both lines are high. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the Wired-AND function. Data transfer is initiated only when the bus is not busy.

Data Validity

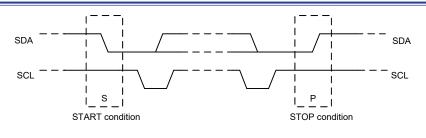

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low.

Figure 5. Data Validity

START and STOP

- (1) A high to low signal transition on the SDA data line while SCL is high defines a START (S)
- (2) A low to high signal transition on the SDA data line while SCL is high defines a STOP (P)
- (3) START and STOP are always generated by the master. The bus is considered to be busy after the START. The bus is considered to be free again a certain time after the STOP.
- (4) The bus stays busy if a REPEATED START (Sr) is generated instead of a STOP. In the respect, the START and REPEATED START are functionally identical.

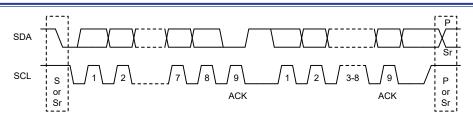
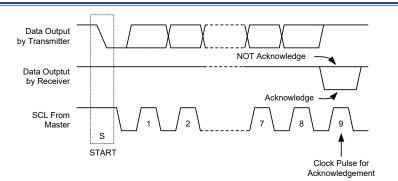


Figure 6. START and STOP

Byte Format


Every byte put on the SDA data line signal must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

Acknowledge

- (1) Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, the master generates an extra acknowledge related clock pulse.
- (2) A slave receiver which is addressed must generate an Acknowledge response signal after the reception of each byte.
- (3) The device that provides an acknowledge must pull down the SDA data line signal during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse.
- (4) A master receiver must signal an end of data to the slave by generating a NOT Acknowledge response signal on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9th pulse to not acknowledge. The master will generate a STOP or Repeated START.

Figure 8. Acknowledge

I²C Time-out Control

In order to reduce the I²C lockup problem due to reception of erroneous clock sources, a time-out function is provided. The I²C time-out function starts timing for the specified I²C time-out period (t_{OUT}) when receiving START (S) from I²C bus. The timer is reset by every falling edge of SCL data line signal and gets interrupted when receiving STOP (P). If the next falling edge of SCL data line signal or STOP (P) does not appear throughout the I²C time-out period (t_{OUT}) , SDA and SCL data line signals are set to default states at the end of timing and meanwhile the registers remains unchanged. The I²C time-out is set to 32 ms by default.

4

Slave Address

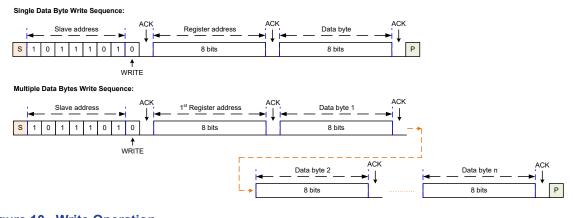

- (1) The slave address byte is the first byte received following the START condition from the master device. The first seven bits of the first byte make up the slave address. The eighth bit defines a read or write operation to be performed. When R/W bit is '1', then a READ operation is selected. When R/W bit is '0', it selects WRITE operation.
- (2) The slave address is "1011101". When an address byte is sent, the device compares the first seven bits after the START condition. If they match, the device outputs an Acknowledge on the SDA data line signal.

Figure 9. Slave Address

Write Operation

An I²C write operation combines a START bit, a Slave address byte with a Write bit, a Register address byte, single or multiple Data bytes, and a STOP bit.

Figure 10. Write Operation

Read Sequence

The complete read mode consists of two stages. 1st stage: writes in the Register Address Byte to the slave. 2nd state: reads out the single or multiple Data Bytes from the slave.

Figure 11. Read Sequence

Individual Cell Voltage Monitor I²C Register Map

The Individual Cell Voltage Monitor I²C register bit map is listed below.

Address	Acronym	Access Type	Register Description				
00H	REG00	R/W	1000 0000	Sleep, Reference Voltage, Charge Pump and Voltage Monitor Control			
01H	REG01	R/W	0000 0000	Cell Balance Control			
02H	REG02	R/W 0000 0000 Current Monitor Se		Current Monitor Setting			
03H	REG03	R/W	1000 0001	Short-Current Detection Setting 1			
04H	REG04	R/W	0000 0001	Short-Current Detection Setting 2			
05H	REG05	R/W	0000 0011	Short-Current Detection Control			
06H	REG06	R/W	1001 0010	Over-temperature Detection and Thermal Sensor			
07H	REG07	R	0000 0000	Chip Status			
08H	REG08	R/W	0000 0000	Interrupt Mask			
09H	REG09	R	0000 0000	Interrupt Flag			

• Sleep, Reference Voltage, Charge Pump and Voltage Monitor Control Register (00H)

Bit	7	6	5	4	3	2	1	0
Name	SLP1	SLP0	EN_VREF	EN_S	EN_CP	B2	B1	B0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	1	0	0	0	0	0	0	0

Bit 7 ~ 6

SLP1 ~ SLP0: Sleep mode enable control

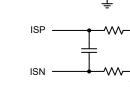
SLP1	SLP0	Action
0	0	Normal operation
0	1	Enter sleep mode
1	0	Normal operation
1	1	Normal operation

Bit 5	 EN_VREF: Reference voltage output function enable control 0: Reference voltage output function is disabled, VREFO pin output = 0 V 1: Reference voltage output function is enabled, VREFO pin output = 2.5 V 						
Bit 4	EN_S : Voltage monitor function enable control 0: Voltage monitor function is disabled, VOUT pin output = 0 V 1: Voltage monitor function is enabled, VOUT pin output = $(V_{BAT1-8} - V_{BAT1-8}) \times 1/2$						
Bit 3	EN_CP: Charge pump function enable control 0: Charge pump function is disabled 1: Charge pump function is enabled, VCP pin = V _{CP}						
Bit 2 ~ 0 B2 ~ B0 : 8-to-1 analog multiplexer selection bits (MSB: B2, LSB: B0) Control B2 ~ B0 to select which cell voltage to be outputted to VOUT.						· · · · · · · · · · · · · · · · · · ·	
	EN_S	B2	B1	B0	V _{оит} (V)		
					•		

EN_S	B2	B1	B0	V _{OUT} (V)
0	—	—		0
1	0	0	0	(V _{BAT1} - V _{BAT0}) × 1/2
1	0	0	1	(V _{BAT2} - V _{BAT1}) × 1/2
1	0	1	0	(V _{BAT3} - V _{BAT2}) × 1/2
1	0	1	1	(V _{BAT4} - V _{BAT3}) × 1/2
1	1	0	0	(V _{BAT5} - V _{BAT4}) × 1/2
1	1	0	1	(V _{BAT6} - V _{BAT5}) × 1/2
1	1	1	0	(V _{BAT7} - V _{BAT6}) × 1/2
1	1	1	1	(V _{BAT8} - V _{BAT7}) × 1/2

*To avoid voltage drop caused by balance current, the cell balance function must be turned off during the voltage monitoring.

• Cell Balance Control Register (01H)


			· · ·						
Bit	7	6	5	4	3	2	1	0	
Name	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
POR	0	0	0	0	0	0	0	0	
Bit 7	CB8 : Enable control of the cell balance switch between VBAT8 and VBAT7 0: Balance switch Off 1: Balance switch On								
Bit 6	CB7 : Enable control of the cell balance switch between VBAT7 and VBAT6 0: Balance switch Off 1: Balance switch On								
Bit 5	0: Bal	hable contro ance switch ance switch	n Off	ll balance sv	witch betwe	en VBAT6	and VBAT	5	
Bit 4	CB5 : Enable control of the cell balance switch between VBAT5 and VBAT4 0: Balance switch Off 1: Balance switch On								
Bit 3	CB4 : Enable control of the cell balance switch between VBAT4 and VBAT3 0: Balance switch Off 1: Balance switch On								

Bit 2	CB3: Enable control of the cell balance switch between VBAT3 and VBAT20: Balance switch Off1: Balance switch On
Bit 1	CB2: Enable control of the cell balance switch between VBAT2 and VBAT10: Balance switch Off1: Balance switch On
Bit 0	CB1: Enable control of the cell balance switch between VBAT1 and VBAT00: Balance switch Off1: Balance switch On

• Current Monitor Setting Register (02H)

Bit	7	6	5	4	3	2	1	0		
Name	IMCE	ZER) IAR	Reserved	Reserved	Reserved	Reserved	Reserved		
R/W	R/W	R/W	R/W	—	—	—	—	—		
POR	0	0	0	0	0	0	0	0		
Bit 7	0: Dis	IMCE: Enable current monitor 0: Disable current monitor 1: Enable current monitor								
Bit 6	 ZERO: Execute zero correction of current monitor 0: The input of internal differential voltage amplifier circuit are connected to ISP and ISN pin 1: Both input of internal differential voltage amplifier circuit are connected to GND 									
Bit 5	0: Vo	ltage am	voltage amplit plifying rate = plifying rate =	10	f current m	onitor				
	Rs	IAR	Maximum disc	charge cur	rent (A)	Maximum	charge cu	rrent (A)		
	2	0		195			15			
	2 mΩ -	1		38			2			
	5 mΩ	0		78			6			
	5 1112	1		15			0.8			
DGN0										

Bit 4 ~ 0

Reserved bits, these bits should be kept unchanged after power-on

≥Rs

• Short-Current Detection Setting 1 Register (03H)

Bit	7	6	5	4	3	2	1	0
Name	ISCE1	ISCE0	Reserved	Reserved	Reserved	SC_2	SC_1	SC_0
R/W	R/W	R/W	—		—	R/W	R/W	R/W
POR	1	0	0	0	0	0	0	1

Bit 7 ~ 6 ISCE1 ~ ISCE0: Enable short-current detection

ISCE1	ISCE0	Action
0	0	Short current detection is off
0	1	Short current detection is activated
1	0	Short current detection is off
1	1	Short current detection is off

- Bit 5 ~ 3 Reserved bits, these bits should be kept unchanged after power-on
- Bit $2 \sim 0$ $SC_2 \sim SC_0$: Select the short-current detection threshold voltage (V_{SCTH}) of short-current detection

If the voltage of $(V_{ISP} - V_{ISN})$ is greater than the threshold voltage, INTB is pulled low by internal switch.

SC_2	SC_1	SC_0	Threshold Voltage
0	0	0	50 mV
0	0	1	100 mV
0	1	0	150 mV
0	1	1	200 mV
1	0	0	250 mV
1	0	1	300 mV
1	1	0	350 mV
1	1	1	400 mV

• Short-Current Detection Setting 2 Register (04H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	TD_4	TD_3	TD_2	TD_1	TD_0
R/W				R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	1

Bit 7 ~ 5 Reserved bits, these bits should be kept unchanged after power-on

Bit $4 \sim 0$

TD_4 ~ TD_0: Select the debounce time of short-current detection

TD_4	TD_3	TD_2	TD_1	TD_0	Debounce Time
0	0	0	0	0	0 µs
0	0	0	0	1	32 µs
0	0	0	1	0	64 µs
0	0	0	1	1	96 µs
0	0	1	0	0	128 µs
0	0	1	0	1	160 µs
0	0	1	1	0	192 µs
0	0	1	1	1	224 µs

TD_4	TD_3	TD_2	TD_1	TD_0	Debounce Time
0	1	0	0	0	256 µs
0	1	0	0	1	288 µs
0	1	0	1	0	320 µs
0	1	0	1	1	352 µs
0	1	1	0	0	384 µs
0	1	1	0	1	416 µs
0	1	1	1	0	448 µs
0	1	1	1	1	480 µs
1	0	0	0	0	512 µs
1	0	0	0	1	544 µs
1	0	0	1	0	576 µs
1	0	0	1	1	608 µs
1	0	1	0	0	640 µs
1	0	1	0	1	672 μs
1	0	1	1	0	704 µs
1	0	1	1	1	736 µs
1	1	0	0	0	768 µs
1	1	0	0	1	800 µs
1	1	0	1	0	832 µs
1	1	0	1	1	864 µs
1	1	1	0	0	896 µs
1	1	1	0	1	928 µs
1	1	1	1	0	960 µs
1	1	1	1	1	992 µs

• Short-Current Detection Control Register (05H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	Reserved	IS_ACT_ DGCN	IS_ACT_ DGN1	IS_ACT_ DGN0
R/W			—	—	—	R/W	R/W	R/W
POR	0	0	0	0	0	0	1	1

Bit $7 \sim 3$ Reserved bits, these bits should be kept unchanged after power-on

Bit 2	 IS_ACT_DGCN: Control actions of DGCN when short-current event is detected IS_ACT_DGCN can be written only when V_{DCN} = 0 V. 0: Remain present output status of DGCN when short-current event is detected 1: Shut down and lock the output of DGCN when short-current event is detected The locked output of DGCN is released by the falling edge of DCN input signal.
Bit 1	 IS_ACT_DGN1: Control actions of DGN1 when short-current event is detected IS_ACT_DGN1 can be written only when V_{DN1} = 0 V. 0: Remain present output status of DGN1 when short-current event is detected 1: Shut down and lock the output of DGN1 when short-current event is detected

The locked output of DGN1 is released by the falling edge of DN1 input signal.

Bit 4

- Bit 0 **IS_ACT_DGN0**: Control actions of DGN0 when short-current event is detected IS ACT DGN0 can be written only when $V_{DN0} = 0$ V.
 - 0: Remain present output status of DGN0 when short-current event is detected
 - 1: Shut down and lock the output of DGN0 when short-current event is detected The locked output of DGN0 is released by the falling edge of DN0 input signal.

• Over-temp	erature Detectio	n and Thorm	al Sonsor Rogi	stor (06H)
• Over-tempe	erature Detectio	n anu menne	ai sensor keyi	

Bit	7	6	5	4	3	2	1	0
Name	EN_OTD	Reserved	Reserved	OTD_ ACT	Reserved	Reserved	OTDTH1	OTDTH0
R/W	R/W	—	—	R/W	—		R/W	R/W
POR	1	0	0	1	0	0	1	0

Bit 7 EN OTD: Enable Over-temperature detection

- 0: Disable Over-temperature detection
 - 1: Enable Over-temperature detection
- Bit $6 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on
 - **OTD_ACT**: Control action of cell balance when internal over-temperature event is detected 0: Remain present turn-on status of cell balance when internal over-temperature event is detected
 - 1: Turn off and lock all cell balance switches when internal over-temperature event is detected

The locked switches of cell balance can only turn on the cell balance function again after resetting the cell balance control register CB[8:1] = 0x00.

- Bit $3 \sim 2$ Reserved bits, these bits should be kept unchanged after power-on
- Bit 1 ~ 0 OTDTH1 ~ OTDTH0: Select the over-temperature detection threshold

Symbol	OTDTH1	OTDTH0	OTD Threshold
T _{OTD1}	0	0	85 °C
T _{OTD2}	0	1	100 °C
T _{OTD3}	1	0	125 °C
T _{OTD4}	1	1	150 °C

• Chip Status Register (07H)

Bit	7	6	5	3	2	1	0	
Name	DGCN_ OUT	DGN1_ OUT	DGN0_ OUT	OTD_ST	EXT_WK2	EXT_WK1	Reserved	IS_SC_ ST
R/W	R	R	R		R			
POR	0	0	0	0	0			
Bit 7	<pre>DGCN_OUT: DGCN output status 0: DGCN output status is off (V_{DGCN} = V_{BAT}) 1: DGCN output status is on (V_{DGCN} = V_{CP})</pre>							
Bit 6	DGN1_OUT : DGN1 output status 0: DGN1 output status is off $(V_{DGN1} = 0 V)$ 1: DGN1 output status is on $(V_{DGN1} = V_Z)$							
Bit 5	DGN0_OUT: DGN0 output status 0: DGN0 output status is off $(V_{DGN0} = 0 V)$							

1: DGN0 output status is on $(V_{DGN0} = V_Z)$

Bit 4	OTD_ST : OTD event status
	0: Junction temperature is under T _{OTD}
	1: Present junction temperature is higher than T_{OTD}
	OTD_ST goes to '0' when internal junction temperature drops under (T_{OTD} - T_{HYS}).
Bit 3	EXT_WK2: HVWK2 wake-up event status
	0: Denotes that external wake-up event does not exist at HVWK2 pin
	1: Denotes that external wake-up event exists at HVWK2 pin
	When V_{HVWK2} remains higher than V_{WKTH} over 10 µs, EXT_WK2 will be set to '1', meanwhile SLP1 and SLP0 are reset to their POR values.
	EXT_WK2 is cleared to '0' immediately when V_{HVWK2} drops under 1.5 V.
Bit 2	EXT_WK1: HVWK1 wake-up event status
	0: Denotes that external wake-up event does not exist at HVWK1 pin
	1: Denotes that external wake-up event exists at HVWK1 pin or is written by MCU
	(1) When V _{HVWK1} remains higher than V _{WKTH} over 1ms, EXT_WK1 will be set to '1', meanwhile SLP1 and SLP0 are reset to their POR values.
	EXT_WK1 is cleared to '0' immediately when V_{HVWK1} drops under 1.5 V.
	(2) EXT_WK1 can be written as '1' by MCU for the purpose of sending a wake-up signal.
	EXT_WK1 have to be written as '0' and SLP[1:0] have to be written as 0b10 through
	I ² C interface after EXT_WK1 is set as '1' by MCU, otherwise external wake-up event
	on HVWK1 pin cannot be recognized and the follow-up Sleep command will be failed.
	(3) Writing both EXT_WK1 and SLP[1:0] as '1' and 0b01 is NOT permitted for avoiding unpredictable status.
	(4) Reading EXT_WK1 reveals the external wake-up even status of HVWK1 pin only.
Bit 1	Reserved bit, this bit should be kept unchanged after power-on
Bit 0	IS_SC_ST: Short-current protection detecting status
	0: V_{ISP} is under V_{SCTH}
	1: Short-current event is happening at Short-current detection ($V_{ISP} > V_{SCTH}$)

Interrupt Mask Register (08H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	OTD_MSK	EXT_WK2_ MSK	EXT_WK1_ MSK	Reserved	IS_SC_ MSK
R/W				R/W	R/W	R/W	—	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 ~ 5	Reserved bits, these bits should be kept unchanged after power-on
Bit 4	OTD_MSK : Over-temperature detection INTB mask 0: OTD_ST entry produces INTB pulse 1: OTD_ST entry does not produce INTB pulse but still trigger OTD_FLG
Bit 3	 EXT_WK2_MSK: External wake-up event detection INTB mask 0: EXT_WK2 entry produces INTB pulse 1: EXT_WK2 entry does not produce INTB pulse but still trigger EXT_WK2_FLG
Bit 2	 EXT_WK1_MSK: External wake-up event detection INTB mask 0: EXT_WK1 entry produces INTB pulse 1: EXT_WK1 entry does not produce INTB pulse but still trigger EXT_WK1_FLG
Bit 1	Reserved bit, this bit should be kept unchanged after power-on
Bit 0	 IS_SC_MSK: Short-current detection INTB mask 0: IS_SC_ST entry produces INTB pulse 1: IS_SC_ST entry does not produce INTB pulse but still trigger IS_SC_FLG

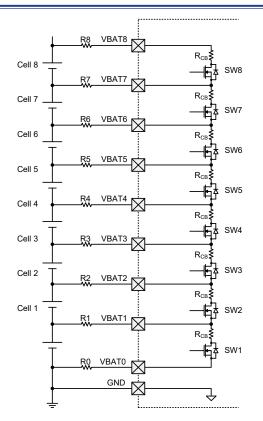
Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	OTD_FLG	EXT_WK2_ FLG	EXT_WK1_ FLG	Reserved	IS_SC_ FLG
R/W	—		—	R	R	R		R
POR	0	0	0 0 0 0 0 0					
	Bit $7 \sim 5$ Reserved bits, these bits should be kept unchanged after power-on							
	Bit 4 OTD_FLG : Over-temperature detection INTB flag 0: Normal 1: OTD_ST rising edge detected OTD FLG is reset to '0' after I ² C master reads Interrupt Flag Register.							
	Bit 3	 EXT_WK2_FLG: HVWK2 external wake-up event detection INTB flag 0: Normal 1: EXT_WK2 rising edge detected EXT_WK2 FLG is reset to '0' after I²C master reads Interrupt Flag Register. 						
	Bit 2	 EXT_WK1_FLG: HVWK1 external wake-up event detection INTB flag 0: Normal 1: EXT_WK1 rising edge detected EXT_WK1_FLG is reset to '0' after I²C master reads Interrupt Flag Register. 						
	Bit 1	Reserved	bit, this bit s	should be ke	pt unchanged	after power-or	n	
	Bit 0	 IS_SC_FLG: Short-current detection INTB flag 0: Normal 1: IS_SC_ST rising edge detected IS_SC_FLG is reset to '0' after I²C master reads Interrupt Flag Register. 						

• Interrupt Flag Register (09H)

Cell Voltage Monitor

B2, B1 and B0 are used to control the switches SW1 ~ SW8 only if EN_S = '1'. The control truth table is shown below. It transfers 1/2 of each battery cell's voltage to VOUT. It's recommended that to keep EN_S = '0' when voltage scanning procedure is finish for power saving.

Table 4.	Cell Voltage	Monitor	Truth Table	Э
----------	--------------	---------	-------------	---


EN_S	B2	B1	B0	SW8	SW7	SW6	SW5	SW4	SW3	SW2	SW1	V _{оит} (V)
0	Х	Х	Х	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	(V _{BAT1} – V _{BAT0}) × 1/2
1	0	0	1	0	0	0	0	0	0	1	0	(V _{BAT2} – V _{BAT1}) × 1/2
1	0	1	0	0	0	0	0	0	1	0	0	(V _{BAT3} – V _{BAT2}) × 1/2
1	0	1	1	0	0	0	0	1	0	0	0	(V _{BAT4} – V _{BAT3}) × 1/2
1	1	0	0	0	0	0	1	0	0	0	0	$(V_{BAT5} - V_{BAT4}) \times 1/2$
1	1	0	1	0	0	1	0	0	0	0	0	$(V_{BAT6} - V_{BAT5}) \times 1/2$
1	1	1	0	0	1	0	0	0	0	0	0	(V _{BAT7} – V _{BAT6}) × 1/2
1	1	1	1	1	0	0	0	0	0	0	0	(V _{BAT8} – V _{BAT7}) × 1/2

Cell Balance

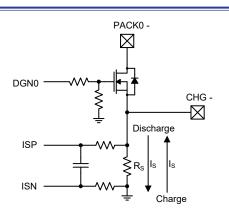
Multiple channels of cell balance switch can be turned on via I^2C interface. The register command byte of cell balance function is 01H, and the BIT7 ~ BIT0 of Data byte correspond to the cell balance switch of each channel from SW8 to SW1, respectively. More than one switch can be turned on in the same time, but side-by-side cell balancing switches are recommended NOT to be turned on simultaneously to ensure equal balance current between each channel. After receiving turn on command, cell balance switch remains turned on until it is turned off by a '0' data or get a command of SLP0 = '1'. By setting OTD_ACT = '1', when internal junction temperature exceeds T_{OTD}, all balance switched are turned off and locked automatically and cannot be turned on again until the locked states are released. All locked switches are released by setting CB[8:1] = 0x00.

The typical cell balance current is 10 mA at battery cell voltage 4.2 V with series resistance 100 Ω , and the balance current can be adjusted by series resistors R0 ~ R8. Note that for the reason of keeping voltage monitor accuracy, do not proceed voltage monitor while cell balance is activated.

CB1	CB2	CB3	CB4	CB5	CB6	CB7	CB8	Balance Switch On/Off
1	0	0	0	0	0	0	0	SW1 On, others Off
0	1	0	0	0	0	0	0	SW2 On, others Off
0	0	1	0	0	0	0	0	SW3 On, others Off
0	0	0	1	0	0	0	0	SW4 On, others Off
0	0	0	0	1	0	0	0	SW5 On, others Off
0	0	0	0	0	1	0	0	SW6 On, others Off
0	0	0	0	0	0	1	0	SW7 On, others Off
0	0	0	0	0	0	0	1	SW8 On, others Off

Table 5. Cell Balance Switch Truth Table

Note: More than one switch can be turned On in the same time.


Current Monitor

A current monitor is fabricated for measuring battery discharge current. The current monitor with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. IMCE signal is the enable control of current monitor, and current monitors can be turned off by setting IMCE = '0' for power saving purpose.

Current measurement is accomplished with placing current sensing resistors connected between ISP and ISN pins, and measure input voltage difference of these pins. The ISP pin level should be higher than the ISN pin level in discharge state for a wide discharge current sensing range. While there is no current on sensing resistor or ZERO = '1', IMON outputs a center voltage of 0.5 V (typ.). When ZERO pin is set to '0', voltage difference of (V_{ISP} - V_{ISN}) is multiplied by the gain of amplifier which is denoted as $G_{IM(R10)}$ for a gain of 10 or $G_{IM(R50)}$ for a gain of 50 and outputted to IMON. The IMON output voltage amplify rate (G_{IM}) is selected by IAR.

The current monitor allows to use one sense resistor for charge and discharge current sensing. In discharge state, the voltage of ISP pin is greater than the ISN pin, and the output voltage of IMON is in the range of 0.5 V (typ.) to 2.5 V (VREF). In charge state, the voltage of ISP pin is smaller ISN pin, and the output voltage of IMON is in the range of 0 V to 0.5 V (typ.). IMON output voltage V_{IMON} is given by the following equation with the current sensing resistor R_S and its current I_S . The value of I_S is positive in discharge state and negative in charge state.

$$V_{\rm IMON}\,{=}\,I_S \times R_S \times G_{\rm IM} + 0.5$$

Figure 13. Current Monitor Schematic Diagram

Short-current Detection

A short-current detection and protection circuit are fabricated for detecting loading short event. Short current detection with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. The ISCE signal is the enable control of short current protection, and short-current protection can be turned off by setting ISCE = '0' for power saving purpose. By means of comparing ($V_{ISP} - V_{ISN}$) to short-current detection threshold voltage (V_{SCTH}), the exceeding current caused by loading shorted can be detected.

Sleep Mode

It is important not to confuse this Sleep mode with the SLEEP mode which is described in the "Power Management Control Unit" section of this datasheet.

When EXT_WK1 and EXT_WK2 signals are all '0' and receiving a sleep command from I²C master, it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. The I²C master will set the SLP1 and SLP0 signals according to register (00H) Bit 7 ~ 6 to make the Individual Cell Voltage Monitor to enter the Sleep mode. During the sleep mode, all outputs are shut down and the capacitor of VREG is discharged through internal discharge resistor. The pre-regulator and high voltage wake-up circuit are the only blocks that are still working in the sleep mode and operates with an ultra-low standby current of 0.1 μ A (typical).

When either the EXT_WK or EXT_WK2 signal is '1', the I²C master will set the SLP1 and SLP0 signals according to register (00H) Bit $7 \sim 6$ and abandon the sleep command until the EXT_WK and EXT_WK2 are cleared to '0'.

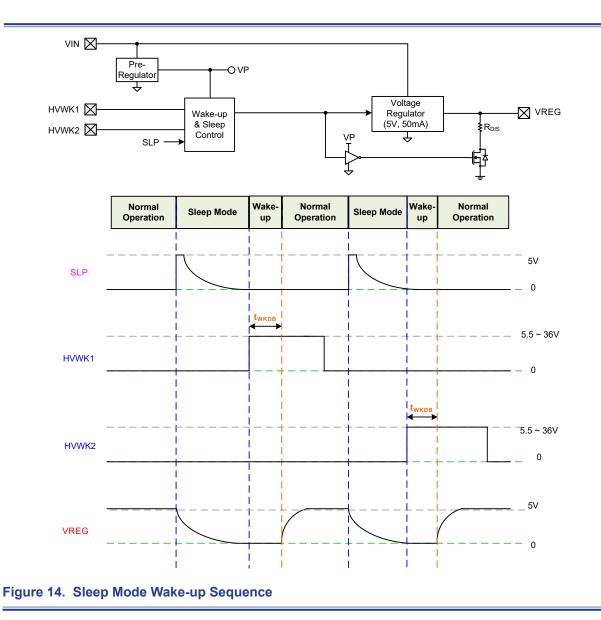

EXT_WK1 Status	EXT_WK2 Status	Sleep Mode Status
0	0	According to I ² C master command or POR default value.
0	1	0
1	0	0
1	1	0

 Table 6.
 Sleep Mode Status Truth Table

Wake up from Sleep Mode

The HVWK1 and HVWK2 pins can be used for detecting charger plugged-in, switch turned on, or load connected events. When the Individual Cell Voltage Monitor is under the Sleep mode and the EXT_WK1 and EXT_WK2 signals are all '0', it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. On the contrary, if either EXT_WK1 or EXT_WK2 signal is '1', it indicates that a wake-up event has occurred. If it is detected that the HVWK1 or HVWK2 pin is triggered by a pulse with requiring at least 5.5 V voltage and 1ms width, the output of VREG will resume and the whole Individual Cell Voltage Monitor is ready for normal operation. The reference timing diagram of entering sleep mode and waked up is listed below.

Discharge Path, i.e., Low-side Power Switch Gate Driver

The DGN0 and DGN1 are fabricated in the chip as discharge switch controllers. The output voltage of DGN0 and DGN1 pins are both clamped at 12 V. A 370 k Ω pull-down resistor is integrated at discharge gate control input DN0 and DN1. While operating in Normal Operation or sleep mode, DGN0 and DGN1 are pulled down by 10 Ω resistors. The control logic and output status of DGN0 and DGN1 pins in each state are listed in the table below.

Table 7.	DGN0 Control Logic and	Output Status in	Different Operating Modes

Operating Mode	DN0	V(DGN0)	Note
Normal Operation	0	0 V	DGN0 output low to 0 V
	1	12 V	DGN0 output high clamp to 12 V
Sleep Mode	Х	0 V	Pulled-low to GND by 10 Ω

Operating Mode	DN1	V(DGN1)	Note
Normal Operation	0	0 V	DGN1 output low to 0 V
	1	12 V	DGN1 output high clamp to 12 V
Sleep Mode	Х	0 V	Pulled-low to GND by 10 Ω

Table 8. DGN1 Control Logic and Output Status in Different Operating Modes

Charge Path, i.e., High-side Power Switch Gate Driver

A high-side power switch gate driver DGCN is provided as a charger switch controller. A charge pump circuit is fabricated to provide BAT or VCP voltage between the gate and source node of external charge power switch. When the DCN is '0', DGCN output low, the voltage level varies with the BAT pin. When the DCN is '1', DGCN output high, the voltage level varies with the VCP pin. A 370 k Ω pull-down resistor is integrated at the control input DCN.

Table 9. DCN Control Logic and DGCN Output Status

Input	Gate Driver Output	Note	
DCN	V(DGCN)	Note	
0	BAT	DGCN output low, the voltage level varies with the BAT pin	
1	VCP	DGCN output high, the voltage level varies with the VCP pin	

Over-temperature Detection

An over-temperature detection (OTD) is integrated in the Individual Cell Voltage Monitor to prevent from IC overheated while cell balance function is turned on. According to the setting of register (06 H), the over-temperature detection function is active when $EN_OTD = '1'$ and any of the Cell Balance switch is turned on. When internal junction temperature $T_J > T_{OTD}$, OTD_ST is set to '1' and OTD_FLG is triggered as '1' if OTD_MSK = '0'. OTD_ST goes to '0' when internal junction temperature drops under (T_{OTD} - T_{HYS}).

By setting OTD_ACT = '1', when internal junction temperature exceeds T_{OTD} , all balance switched are turned off and locked automatically. All locked switches cannot be turned on again until they are released by setting CB [8:1] = 0x00.

VIN, VREG Capacitors

The VIN input capacitor C1 and VREG output capacitor C2 are 4.7 μ F for better input noise filtering and output load transient behavior.

Figure 15. Input / output Capacitor Configuration

VIN_LDO Filter Recommendation

The input capacitor C1 for VIN LDO is used for lowering the input voltage ripple while the battery is supplying a highly inductive load in PWM mode. The recommanded value of VIN LDO input capacitor C1 is 4.7 µF. The input resistor R9 of VIN LDO is able to reduce the inrush current during battery assembly, and also it shares the heat on chip while VREG outputs a large current in normal operation mode. The recommanded value for VIN LDO input resistor R9 differs from different battery cell number applications. The recommended resistance values of VIN LDO input resistor R9 with different battery cell numbers and the corresponding VREG maximum output current are listed in the table below.

Figure 16. VIN R9 Configuration

Table 10. R9 Recommended Values for Different Cell Numbers					
Battery Cell Number	Input Resistor (R9)	VREG Maximum Output Current			
3S	15 Ω	50 mA			
4S	43 Ω	50 mA			
5S	110 Ω	40 mA			
6S	220 Ω	35 mA			
7S	330 Ω	30 mA			
8S	430 Ω	30 mA			

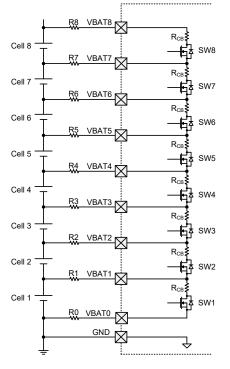
. . . . -----. .

It is necessary to select an appropriate package for VIN LDO input resistor (R9) in order to prevent it being damaged from overheated. The maximum power of the resistor is easily calculated by:

 $P_{R9,MAX} = (I_{REG})^2 \times R9$, where I_{REG} is the maximum VREG output current

It is recommended to choose the resistor package that its maximum rated power is greater than twice the P_{R9MAX} .

VBAT1 ~ VBAT8 Protection and Balance Resistor Selection


The VBAT1 ~ VBAT8 represents the VBAT1 ~ VBAT8 pins. Series resistors RBn includes R1 ~ R8, which not only suppress inrush and noise spikes applied to I/O pins, they affect cell balance current as well. Larger resistance of R1 ~ R8 provide better protection to VBAT1 ~ VBAT8 and other I/O pins, but they lower the cell balance current instead. The cell balance current of each channel is configured by internal balance resistors and external series resistors. Because the balance current of Cell 1 flows out through the GND pin while using the standard version product, the balance current of Cell 1 is greater than that of other cells. Considering inrush spike protection to I/O pins and noise reduction of voltage monitor, the recommended typical values of resistor R0 ~ R8 are 100 Ω , and the charge balancing current I_{CB} is 10 mA while the voltage of battery cell is 4.2 V. If larger balancing current is needed, the recommended minimum values of resistors R1 ~ R8 are 30 Ω which provide 23 mA while the voltage VBn of each cell is 4.2 V. To ensure the internal balance circuit works

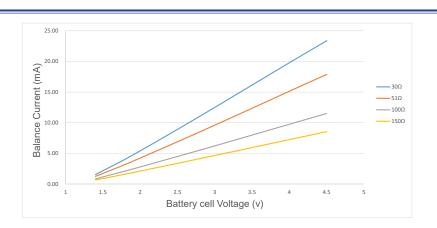

properly, the minimum battery cell voltage to start the balance function is 3 V. The recommended VBAT1 \sim VBAT8 series resistors and their related charge balancing current are listed in the table below.

Table 11. R0 ~ R8 Recommended Values for Different Balance Current

Resistance of R0 ~ R8 (R _{Bn})	Typical Balancing Current (@V _{Bn} = 4.2 V) (I _{CB})	Note
30 Ω	23.4 mA	Minimum value of resistor R0 ~ R8
51 Ω	19 mA	—
100 Ω	11.5 mA	_
150 Ω	8.5 mA	_

Figure 18. Balanced Current VS Balanced Voltage

Increase Charging Balance Current

Refer to the following application circuits, when cell balance is turned on internally, the R1 will generate a voltage drop to make transistor Q1 conductive. Set the $V_{B1} = 4.2$ V, R1 = R4 = R2 = 100 R, balanced current (IC) is 150 mA, it is recommended Q1 to choose NPN transient HFE ≥ 85 , $V_{CE(sat)} \leq 0.1$ V, $V_{BE (sat)} \approx 0.7$ V, and calculate R3 according to the following formula:

1. $R3 = (V_{B1} - V_{CE(sat)}) / IC$

2. R3 selects resistance watts based on the calculation result

 $P_D = ((V_{B1} - V_{CE(sat)})^2) / R_3$

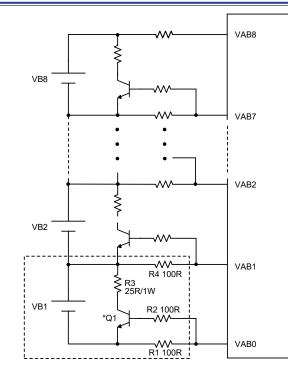
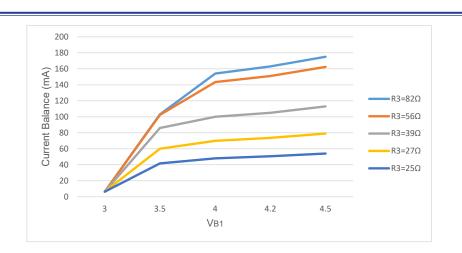
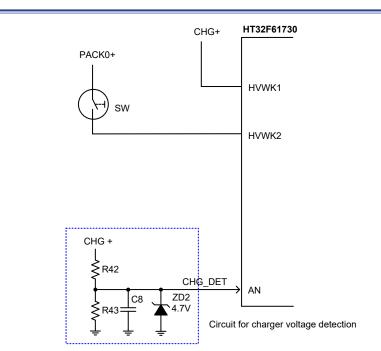
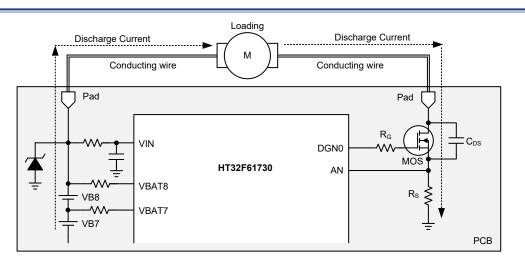



Figure 19. External Balanced Application Circuit



Charger and Switch Status Detection


The High-voltage wake-up function HVWK1 and HVWK2 pins are capable of detecting charger plugged in or load switched On. The recommended wake-up function external circuit is listed below. When a charger is plugged in or load switch is on, the voltage of HVWK1 is triggered to be larger than V_{WKTH} and set EXT_WK1 signal as '1'. After the charger or switch is removed or turned off, EXT_WK1 signal is reset to '0'. An device can acquire the charger or switch status by read EXT_WK1 signal through the I²C interface. Therefore, by means of reading the EXT_WK1 or EXT_WK2 signal status, additional charger or switch detection circuit for device are not necessary. The circuit below is typical application for high-voltage wake-up function and optional circuit for charger plugged-in detection while SW is ON.

If independent charger and switch detection is required, an optional circuit for charger plugged-in detection is recommended. With this optional circuit, device can independently detect charger plugged-in event and start battery charge procedure.

Figure 21. Charger and Switch Status Detection

Voltage Spike Suppression Method

Figure 22. Simplified Typical BMS System Discharge Path Diagram

Most battery-management systems would monitor charge and discharge current to prevent over-current damage. Due to the parasitic inductance on conducting wires and PCB layout connections, large voltage spike may occurs while the controlled MOS rapidly shuts down the charge or discharge current, and this spike may damage the device VBAT1 ~ VBAT8 or VIN pins. Any voltage spike on VBAT1 ~ VBAT8 and VIN pins should not over the limitation in Absolute Maximum Ratings, which is 48 V. Four recommended measures listed below would help to reduce the voltage spike.

- 1. Make the external conducting wire and PCB layout connections as short as possible where large charge or discharge current flows.
- 2. Adjust the slew rate of MOS switch with the gate resistor R_G . Turn off the MOS with slower slew rate for lower voltage spike, and the tradeoff is a slower protection response time.
- 3. Add a capacitor (C_{DS}) between drain and source node of the MOS switch as shown above. The recommended capacitance is 0.1 μ F to 0.22 μ F.
- 4. Add a 39 V Zener diode between the highest voltage potential node of battery cells and GND.

Thermal Considerations

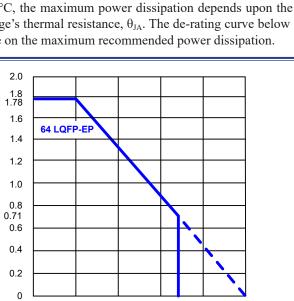
The maximum power dissipation depends upon the thermal resistance of the product package, PCB layout, rate of surrounding airflow and difference between the junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}(W)$$

Where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature and θ_{JA} is the junction-to-ambient thermal resistance of the product package.

For maximum operating rating conditions, the maximum junction temperature is 125 °C. However, it is recommended that the maximum junction temperature does not exceed 125 °C during normal operation to maintain high reliability. The de-rating curve of the maximum power dissipation is show below:

$$P_{D(MAX)} = (125 \text{ °C} - 25 \text{ °C}) / (56 \text{ °C/W}) = 1.785 \text{ W}$$


Maximum Power Dissipation (W)

0

25

50

Ambient Temperature (°C)

75 **85**

100

125

HOLTE

www.holtek.coi

For a fixed $T_{J(MAX)}$ of 125 °C, the maximum power dissipation depends upon the operating ambient temperature and the package's thermal resistance, θ_{JA} . The de-rating curve below shows the effect of rising ambient temperature on the maximum recommended power dissipation.

Figure 23. Derating Curve

5 Pin Assignment

											6173											
			NC	NC	VBAT8	VBAT7	VBAT6	VBAT5	VBAT4	VBAT3	VBAT2	VBAT1	VBAT0	ISN	ISP	PA2/VOUT	PA1	PA0		AF0 (Default)		
AF0 (Default)	$\int c$	C	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			AF0 (Default)	AF1
		_	\ge	Х	AP	AP	AP	AP	AP	AP	AP	AP	AP	AP	AP	VDD	VDD	VDD				
DGCN	1	AP		_															AP	48	ADVREFP	
HVWK1	2	AP		PVDE	V _{DI}	D Pow	er Pao	b											VDD	47	PB8	
HVWK2	3	AP		AP	An	alog F	ower	Pad											VDD	46	PB7	
GND	4	AP		D45															\bowtie	45	NC	
NC	5	\bowtie		P15	1.5	5 V Po	wer P	ad											Х	44	NC	
VCP	6	AP		VDD		D Digit	al & A	nalog	I/O P	ad									VDD	43	PA3	
BAT	7	AP		VDD		D Digit	al I/O	Pad											VDD	42	PA4	
DGN1	8	AP				5 3.													VDD	41	PB1	
DGN0	9	AP		VDD	VDI	D Dom	iain Pa	ad											VDD	40	PB0	
NC	10	\bowtie																	VDD	39	SWDIO	PA13
VIN_LDO	11	AP																	VDD	38	SWCLK	PA12
VIN	12	AP																	VDD	37	PA11	
NC	13	\boxtimes																	VDD	36	PA10	
VREG	14	AP																	VDD	35	PA9_BOOT	
INTB	15	AP															EP		VDD	34	PA8	
VREFO	16	AP														*	VSS		Х	33	NC	
			P15	PVDD	PVDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	Х	\bowtie	\boxtimes	\boxtimes				
			17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32				
			CLDO	VDD	VSS/VSSA	nRST	PB9	X32KIN	Х32КОИТ	RTCOUT	XTALIN	XTALOUT	PB15	PC0	NC	NC	NC	NC		AF0 (Default)		
								PB10	PB11	PB12	PB13	PB14								AF1	į	

Table 12. Pin Assignment

Daakagaa			Al	ternate Funct	ion Mapping			
Packages	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
64LQFP-EP	System Default	System Other	ADC	LEDC	SCTM	SPI	UART	l²C
49	PA0	VBG	ADC_IN2	LED_SEG0	SCTM1_CH0	SPI_SCK		I2C_SCL
50	PA1		ADC_IN3	LED_SEG1	SCTM1_CH1	SPI_MOSI		I2C_SDA
51	PA2/VOUT ⁽²⁾		ADC_IN4	LED_SEG2		SPI_MISO	UR0_TX	
52	ISP							
53	ISN							
54	VBAT0							
55	VBAT1							
56	VBAT2							
57	VBAT3							
58	VBAT4							
59	VBAT5							
60	VBAT6							
61	VBAT7							
62	VBAT8							
1	DGCN							
2	HVWK1							
3	HVWK2							
4	GND							
6	VCP							
7	BAT							
8	DGN1							
9	DGN0							
11	VIN_LDO							
12	VIN							
14	VREG							
15	INTB							
16	VREFO							
17	CLDO							
18	VDD							
19, EP ⁽¹⁾	VSS/VSSA							
20	nRST							
21	PB9	PB9/ WAKEUP1			SCTM0_CH0			
22	X32KIN	PB10		LED_SEG4	SCTM1_CH1	SPI_SEL	UR1_TX	
23	X32KOUT	PB11		LED_SEG5	SCTM1_CH0	SPI_SCK	UR1_RX	
24	RTCOUT	PB12/ WAKEUP0			SCTM0_CH1	SPI_MISO		
25	XTALIN	PB13		LED_SEG6	SCTM2_CH0		UR0_TX	I2C_SCL
26	XTALOUT	PB14		LED_SEG7	SCTM2_CH1		UR0_RX	I2C_SDA
27	PB15					SPI_SEL		I2C_SCL

Deekerse		Alternate Function Mapping												
Packages	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7						
64LQFP-EP	System Default	System Other	ADC	LEDC	SCTM	SPI	UART	l ² C						
28	PC0			LED_COM0	SCTM1_CH1	SPI_SCK		I2C_SDA						
34	PA8			LED_COM1	SCTM2_CH1		UR0_TX							
35	PA9_BOOT	CKOUT			SCTM1_CH0	SPI_MOSI								
36	PA10			LED_COM2	SCTM0_CH0	SPI_MOSI	UR0_RX							
37	PA11			LED_COM3	SCTM0_CH1	SPI_MISO								
38	SWCLK	PA12												
39	SWDIO	PA13												
40	PB0			LED_SEG0	SCTM2_CH0	SPI_MOSI	UR0_TX	I2C_SCL						
41	PB1			LED_SEG1	SCTM2_CH1	SPI_MISO	UR0_RX	I2C_SDA						
42	PA4		ADC_IN6	LED_SEG4		SPI_SCK	UR1_TX	I2C_SCL						
43	PA3		ADC_IN5	LED_SEG3		SPI_SEL	UR0_RX							
46	PB7		ADC_IN0	LED_SEG4	SCTM0_CH0	SPI_MISO	UR0_TX	I2C_SCL						
47	PB8		ADC_IN1	LED_SEG5	SCTM0_CH1	SPI_SEL	UR0_RX	I2C_SDA						
48	ADVREFP													
5, 10, 13, 29~33, 44, 45, 63, 64	NC													

Note: 1. The EP is meant the exposed pad of the LQFP-EP package. The EP VSS pin is internally connected to pin 19 and needs to be externally connected to the GND pin.

2. The Individual Cell Voltage Monitor output VOUT is bonded together internally with PA2.

Pin Number	Pin	Type ⁽¹⁾	I/O	Output	Description
64LQFP-EP	Name	Type	Structure ⁽²⁾	Driving	Default Function (AF0)
49	PA0	AI/O	5V	4/8/12/16 mA	PA0
50	PA1	AI/O	5V	4/8/12/16 mA	PA1
51	PA2/VOUT		5V	4/8/12/16 mA	PA2, this pin provides a UART_TX function in the Boot loader mode
01	17/2/1001	AI/O	5V		VOUT, Voltage monitor output
52	ISP	AN	_	_	AFE current monitor positive terminal voltage input pin. The voltage level of ISP pin should be higher than that of ISN in discharge state
53	ISN	AI	_	_	AFE current monitor negative terminal voltage input pin. Connected to the most negative terminal of battery cells
54	VBAT0	AI	_		Battery cell 1 negative terminal
55	VBAT1	AI	—		Battery cell 1 positive terminal and battery cell 2 negative terminal
56	VBAT2	AI	_		Battery cell 2 positive terminal and battery cell 3 negative terminal
57	VBAT3	AI	—		Battery cell 3 positive terminal and battery cell 4 negative terminal
58	VBAT4	AI	—		Battery cell 4 positive terminal and battery cell 4 negative terminal
59	VBAT5	AI	—		Battery cell 5 positive terminal and battery cell 6 negative terminal
60	VBAT6	AI	—		Battery cell 6 positive terminal and battery cell a negative terminal
61	VBAT7	AI	—		Battery cell 7 positive terminal and battery cell 8 negative terminal
62	VBAT8	AI		_	Battery cell 8 positive terminal
1	DGCN	AN	_		Gate driver output for driving charge n-MOSFE
2	HVWK1	AI	_	_	High voltage wake-up function sense and trigge pin 1
3	HVWK2	AI	—		High voltage wake-up function sense and trigge pin 2
4	GND	Р			Ground terminal
6	VCP	AN	_	_	Charge pump capacitor for DGCN. Connect a capacitor between VCP and BAT
7	BAT	AN	_	_	Charge pump capacitor for DGCN. Connect a capacitor between VCP and BAT
8	DGN1	AO	_		Gate driver output 1 for driving discharge n-MOSFET. Recommended for applying on secondary loading path
9	DGN0	AO	_	_	Gate driver output 0 for driving discharge n-MOSFET. Recommended for applying on primary loading path
11	VIN_LDO	Р			Input supply voltage for regulator

Table 13. Pin Description

Pin Number	Pin	T	I/O	Output	Description
64LQFP-EP	Name	Type ⁽¹⁾	Structure ⁽²⁾	Driving	Default Function (AF0)
12	VIN	Р	_	_	AFE Gate-drive supply voltage. Connect to the top VBATn
14	VREG	Р	_		Regulator 5 V / 50 mA output. Connect 4.7 µF capacitor typically
15	INTB	Ρ	_	_	Interrupt output pin of short-current detection for AFE. NMOS open drain output and output a low level pulse when short-current event is detected. Connect to the EXTIn generally
16	VREFO	AN	—		Reference voltage 2.5 V output pin. Connect to the VREF generally.
17	CLDO	Р	—	_	Core power LDO output It must be connected a 2.2 μ F capacitor as close as possible between this pin and VSS
18	VDD	Р			Voltage for digital I/O
19, EP	VSS/VSSA	Р	_		Ground reference for digital I/O and A/D converter
20	nRST ⁽³⁾	I	5V_PU		External reset
21	PB9 ⁽³⁾	I/O (V _{DD})	5V	4/8/12/16 mA	PB9
22	PB10 ⁽³⁾	AI/O (V _{DD})	5V	4/8/12/16 mA	X32KIN
23	PB11 ⁽³⁾	AI/O (V _{DD})	5V	4/8/12/16 mA	X32KOUT
24	PB12 ⁽³⁾	I/O (V _{DD})	5V	4/8/12/16 mA	RTCOUT
25	PB13	AI/O	5V	4/8/12/16 mA	XTALIN
26	PB14	AI/O	5V	4/8/12/16 mA	XTALOUT
27	PB15	I/O	5V	4/8/12/16 mA	PB15
28	PC0	I/O (V _{DD})	5V	4/8/12/16 mA	PC0
34	PA8	I/O (V _{DD})	5V	4/8/12/16 mA	PA8
35	PA9	I/O (V _{DD})	5V_PU	4/8/12/16 mA	PA9_BOOT
36	PA10	I/O (V _{DD})	5V	4/8/12/16 mA	PA10
37	PA11	I/O (V _{DD})	5V	4/8/12/16 mA	PA11
38	PA12	I/O (V _{DD})	5V_PU	4/8/12/16 mA	SWCLK
39	PA13	I/O (V _{DD})	5V_PU	4/8/12/16 mA	SWDIO
40	PB0	I/O (V _{DD})	5V	4/8/12/16 mA	РВО
41	PB1	I/O (V _{DD})	5V	4/8/12/16 mA	PB1

Pin Number	Pin	Type ⁽¹⁾	I/O	Output	Description
64LQFP-EP	Name	Type	Structure ⁽²⁾	Driving	Default Function (AF0)
42	PA4	AI/O	5V	4/8/12/16 mA	PA4, this pin provides a UART_TX function in the Boot loader mode
43	PA3	AI/O	5V	4/8/12/16 mA	PA3, this pin provides a UART_RX function in the Boot loader mode
46	PB7	AI/O	5V	4/8/12/16 mA	PB7
47	PB8	AI/O	5V	4/8/12/16 mA	PB8
48	ADVREFP	Р	_		Positive reference voltage for the ADC
5, 10, 13, 29~33, 44, 45, 63, 64	NC				Not connected

Note: 1. I = input, O = output, A = Analog port, P = Power Supply, $V_{DD} = V_{DD}$ Power, EP = Exposed Pad.

- 2. 5V = 5 V operation I/O type, PU = Pull-up.
- 3. These pins are located at the V_{DD} power domain.
- 4. In the Boot loader mode, the UART interface is available for communication.

Interconnection Signal Description

The MCU generated signals such as the SCTM0 channel output and SCTM2 channel output have been internally connected to the Individual Cell Voltage Monitor for control purpose. The connections are listed in the following table and the related control registers should be configured correctly using application program.

Table 14. Internal Connection Signal Lines

MCU Signal Name	Individual Cell Voltage Monitor Signal Name	Description
PC7	DCN	Gate-driver DGCN control input ^(Note) . The MCU AFIO setting should be AF0 to select the General Purpose Input/Output pin function.
PC5/SCTM2_CH1 (SCTM2)	DN1	Gate-driver DGN1 control input ^(Note) . If the SCTM2_CH1 output is used, the MCU AFIO setting should be AF4 to select the SCTM pin function.
PC6	SCL	Individual Cell Voltage Monitor I ² C serial clock input line. The MCU AFIO setting should be AF0 to select the General Purpose Input/Output pin function.
PC4	SDA	Individual Cell Voltage Monitor I ² C serial data input / output line. The MCU AFIO setting should be AF0 to select the General Purpose Input / Output pin function.
PB3/SCTM0_CH0 (SCTM0)	DN0	Gate-driver DGN0 control input ^(Note) . If the SCTM0_CH0 output is used, the MCU AFIO setting should be AF4 to select the SCTM pin function.
PA5/ADC_IN7 (ADC)	IMON	Current monitor output pin. Voltage of ISP-ISN multiplied by 10 or 50 is outputted. If the ADC_IN7 output is used, the MCU AFIO setting should be AF2 to select the ADC pin function.

Note: Internal pull down with 370 k Ω .

6 Electrical Characteristics

Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 15. Absolute Maximum Ratings

Symbol	Value	Unit
V _{DD}	(Vss-0.3) to (Vss+5.5)	V
Input Voltage	(Vss-0.3) to (V _{DD} +0.3)	V
T _A	-40 to 85	°C
T _{STG}	-60 to 150	°C
TJ	< 125	°C
P _D	< 500	mW
VIN, VIN_LDO,HVWK1,HVWK2, BAT	-0.3 to 48	V
DGCN, VCP	-0.3 to 60	V
DGN0, DGN1	-0.3 to 18	V
VREG, VOUT, ISP, ISN, IMON, INTB, VREFO	-0.3 to 5.5	V
Δ[VBATi ~ VBAT(i-1)], i=8~1	-0.3 to 5.5	V
Electrostatic Discharge Voltage (Human Body Model)	-2000 to 2000	V

Recommended DC Operating Conditions

Table 16. Recommended DC Operating Conditions

 T_A = 25 °C, unless otherwise specified

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	—	2.5	5.0	5.5	V
VADVREFP	ADC Positive Reference Voltage	—	2.5	5.0	5.5	V

Note: The $V_{ADVREFP}$ power voltage needs below or equal to the V_{DD} power voltage.

Recommended Operating Ratings

Table 17. Table xx. Recommended Operating Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input supply voltage for regulator	—	7.5	—	36	V
T _A	Operating Temperature Range	—	-40	—	85	°C

Note: Recommended Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specified performance limits.

On-Chip LDO Voltage Regulator Characteristics

Table 18. LDO Characteristics

T _A = 25 °C,	unless	otherwise	specified
-------------------------	--------	-----------	-----------

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{LDO}	Internal Regulator Output Voltage	$V_{DD} \ge 2.5 \text{ V}$ Regulator input @ $I_{LDO} = 12 \text{ mA}$ and voltage variant 1 = $\pm 5 \%$, After trimming		1.5	1.57	V
I _{LDO}	Output Current	V_{DD} = 2.5 V Regulator input @ V_{LDO} = 1.5 V		12	15	mA
C _{LDO}	External Filter Capacitor Value for Internal Core Power Supply	The capacitor value is dependent on the core power current consumption	1	2.2		μF

Power Consumption

Table 19. Power Consumption Characteristics

$T_A = 25 \text{ °C}$, unless otherwise specified									
Symbol	Parameter	f	Co	Conditions		Мах	@ T _A	Unit	
Symbol	Farameter	f _{HCLK}	CO			25 °C	85 °C	Unit	
		16	$V_{DD} = 5 V$	All peripherals enabled	3.35	3.60			
		MHz	HSI = 16 MHz	All peripherals disabled	2.75	2.95		mA	
	Supply Current (Run Mode)	8	V _{DD} = 5 V	All peripherals enabled	1.88	2.02		IIIA	
		MHz	HSI = 16 MHz	All peripherals disabled	1.57	1.69		1	
		32 kHz	$V_{DD} = 5 V$ LSI = 32 kHz LDO in LCM Mode	All peripherals enabled	26.39	32.72		μA mA	
				All peripherals disabled	25.13	31.42			
I _{DD}		16 MHz	V _{DD} = 5 V HSI = 16 MHz	All peripherals enabled	1.16	1.24			
	Supply Current			All peripherals disabled	0.44	0.48			
	(Sleep Mode)	8	$V_{DD} = 5 V$	All peripherals enabled	0.77	0.83			
		MHz	HSI = 16 MHz	All peripherals disabled	0.41	0.45			
_	Supply Current (Deep-Sleep1 Mode)	—		V_{DD} = 5 V, HSI/HSE clock off, LDO in LCM Mode, LSE off, LSI on, RTC on				μA	
	Supply Current (Deep-Sleep2 Mode)	—	V _{DD} = 5 V, HSI/HSE DMOS on, LSE off,	Eclock off, LDO off, LSI on, RTC on	3.45	5.14	_	μA	

Note: 1. HSE means high speed external oscillator. HSI means 16 MHz high speed internal oscillator.

LSE means 32.768 kHz low speed external oscillator. LSI means 32 kHz low speed internal oscillator.
 RTC means real-time clock.

4. Code = while (1) { 208 NOP } executed in Flash.

Reset and Supply Monitor Characteristics

Table 20. V_{DD} Power Reset Characteristics

$T_A = 25 \text{ °C}$, unless otherwise spec								
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
V _{POR}	Power On Reset Threshold (Rising Voltage on V_{DD})	T₄ = -40 °C ~ 85 °C	2.22	2.35	2.48	V		
V _{PDR}	Power Down Reset Threshold (Falling Voltage on V_{DD})	$T_{A} = -40$ C ~ 65 C	2.12	2.2	2.33	V		
V _{PORHYST}	POR Hysteresis	—	_	150		mV		
t _{POR}	Reset Delay Time	V _{DD} = 5.0 V		0.1	0.2	ms		

Note: 1. Data based on characterization results only, not tested in production.

2. If the LDO is turned on, the V_{DD} POR has to be in the de-assertion condition. When the V_{DD} POR is in the assertion state then the LDO will be turned off.

Table 21. LVD / BOD Characteristics

 T_{A} = 25 °C, unless otherwise specified

Symbol	Parameter	Conditio	ons	Min.	Тур.	Max.	Unit
V_{BOD}	Voltage of Brown Out Detection	After factory-trimmed, V _{DD} falling edge		2.37	2.45	2.53	V
	Voltage of Low Voltage Detection		LVDS = 000	2.57	2.65	2.73	V
		V _{DD} falling edge	LVDS = 001	2.77	2.85	2.93	V
			LVDS = 010	2.97	3.05	3.13	V
V_{LVD}			LVDS = 011	3.17	3.25	3.33	V
			LVDS = 100	3.37	3.45	3.53	V
			LVDS = 101	4.15	4.25	4.35	V
			LVDS = 110	4.35	4.45	4.55	V
			LVDS = 111	4.55	4.65	4.75	V
VLVDHTST	LVD Hysteresis	V _{DD} = 5.0 V			100		mV
t _{suLVD}	LVD Setup Time	V _{DD} = 5.0 V		—	—	5	μs
\mathbf{t}_{atLVD}	LVD Active Delay Time	V _{DD} = 5.0 V		—	—	—	ms
IDDLVD	Operation Current ⁽²⁾	V _{DD} = 5.0 V			10	20	μA

Note: 1. Data based on characterization results only, not tested in production.

- 2. Bandgap current is not included.
- 3. LVDS field is in the PWRCU LVDCSR register.

External Clock Characteristics

Table 22. High Speed External Clock (HSE) Characteristics

 T_A = 25 °C, unless otherwise specified

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	—	5.5	V
f _{HSE}	HSE Frequency	V _{DD} = 2.5 V ~ 5.0 V	4		16	MHz
CL	Load Capacitance	V_{DD} = 5.0 V, R_{ESR} = 100 Ω @ 16 MHz	—	—	12	pF
R_{FHSE}	Internal Feedback Resistor between XTALIN and XTALOUT pins	V _{DD} = 5.0 V		0.5		MΩ

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{ESR}	Equivalent Series Resistance	V_{DD} = 5.0 V, C _L = 12 pF @ 16 MHz, HSEGAIN = 0			110	0
		V_{DD} = 2.5 V, C _L = 12 pF @ 16 MHz, HSEGAIN = 1		—	110	12
D _{HSE}	HSE Oscillator Duty Cycle		40	—	60	%
	HSE Oscillator Current Consumption	$ V_{\text{DD}} = 5.0 \text{ V}, \text{R}_{\text{ESR}} = 100 \Omega, \\ C_{\text{L}} = 12 \text{ pF } @ 8 \text{ MHz}, \text{ HSEGAIN} = 0 $		0.85	_	
IDDHSE		V_{DD} = 5.0 V, R _{ESR} = 25 Ω, C _L = 12 pF @ 16 MHz, HSEGAIN = 1		3.0		mA
PWDHSE	HSE Oscillator Power Down Current	V _{DD} = 5.0 V			0.01	μA
t _{suhse}	HSE Oscillator Startup Time	V _{DD} = 5.0 V	—		4	ms

Table 23. Low Speed External Clock (LSE) Characteristics

	$T_A = 25$ °C, unless otherwise specified									
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
V _{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	_	5.5	V				
f_{CK_LSE}	LSE Frequency	V _{DD} = 2.5 V ~ 5.5 V		32.768		kHz				
R _F	Internal feedback resistor	_		10		MΩ				
R _{ESR}	Equivalent Series Resistance	V _{DD} = 5.0 V	30	_	TBD	kΩ				
CL	Recommended load capacitances	V _{DD} = 5.0 V	6	_	TBD	pF				
	Oscillator Supply Current (High Current Mode)		_	3.3	6.3	μA				
I _{DDLSE}	Oscillator Supply Current (Low Current Mode)		_	1.8	3.3	μA				
	Power Down Current	_	_	_	0.01	μA				
t _{sulse}	LSE Oscillator Startup Time (Low Current Mode)		500	_	_	ms				

Note: The following guidelines are recommended to increase the stability of the crystal circuit of the HSE / LSE clock in the PCB layout.

1. The crystal oscillator should be located as close as possible to the MCU to keep the trace length as short as possible to reduce any parasitic capacitance.

2. Shield lines in the vicinity of the crystal by using a ground plane to isolate signals and reduce noise.

3. Keep any high frequency signal lines away from the crystal area to prevent the crosstalk adverse effects.

Internal Clock Characteristics

Table 24. High Speed Internal Clock (HSI) Characteristics

	$T_A = 25$ °C, unless otherwise specified								
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
V_{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	—	5.5	V			
f _{HSI}	HSI Frequency								
	Factory Calibrated HSI Oscillator Frequency Accuracy	V_{DD} = 2.5 V ~ 5.5 V, T _A = 25 °C	-1		1	%			
ACCHSI		V _{DD} = 2.5 V ~ 5.5 V T _A = -25 °C ~ 85 °C	-2.5		2	%			
		V _{DD} = 2.5 V ~ 5.5 V T _A = -40 °C ~ 85 °C	-4		3	%			
Duty	Duty Cycle	f _{HSI} = 16 MHz	35		65	%			
	Oscillator Supply Current	f _{HSI} = 16 MHz			140	μA			
IDDHSI	Power Down Current	@ V _{DD} = 2.5 V ~ 5.5 V			0.01	μA			
T _{SUHSI}	HSI Oscillator Startup Time	f _{HSI} = 16 MHz	_	—	20	μs			

Table 25. Low Speed Internal Clock (LSI) Characteristics

$T_A = 25$ °C, unless otherwise specified

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operation Range	T _A = -40 °C ~ 85 °C	2.5	—	5.5	V
f _{LSI}	LSI Frequency	V_{DD} = 5.0 V, T_{A} = -40 °C ~ 85 °C	21	32	43	kHz
ACC	LSI Frequency Accuracy	V_{DD} = 5.0 V, with factory-trimmed	-10		+10	%
	LSI Oscillator Operating Current	V _{DD} = 5.0 V		0.5	0.8	μA
t _{SULSI}	LSI Oscillator Startup Time	V _{DD} = 5.0 V	—	—	100	μs

Memory Characteristics

Table 26. Flash Memory Characteristics

$T_A = 25 \text{ °C}$, unless otherwise specified Symbol Parameter Conditions Min. Max. Unit Тур. Number of Guaranteed Program / Erase T_A = -40 °C ~ 85 °C 20 K cycles N_{ENDU} _____ ____ Cycles before Failure (Endurance) T_A = -40 °C ~ 85 °C Data Retention Time 10 Years t_{RET} ____ ____ T_A = −40 °C ~ 85 °C Word Programming Time 20 t_{PROG} μs Page Erase Time T_A = -40 °C ~ 85 °C 2 ms $\mathbf{t}_{\text{ERASE}}$ _ _ T_A = -40 °C ~ 85 °C Mass Erase Time 10 t_{MERASE} ms

I/O Port Characteristics

Table 27. I/O Port Characteristics

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
		5.0 V I/O	V _I = V _{ss} , On-chip pull-up	_	_	3	μA
IL	Low Level Input Current	Reset pin	resister disabled	_	—	3	μA
		5.0 V I/O	$V_{I} = V_{DD}$, On-chip pull-down	—		3	μA
IIH	High Level Input Current	Reset pin	resister disabled		—	3	μA
		5.0 V I/O		-0.5	_	V _{DD} × 0.35	V
VIL	Low Level Input Voltage	Reset pin		-0.5	_	V _{DD} × 0.35	V
	Lligh Lovel Input Voltage	5.0 V I/O		V _{DD} × 0.65	_	V _{DD} + 0.5	V
V _{IH}	High Level Input Voltage	Reset pin		V _{DD} × 0.65	_	V _{DD} + 0.5	V
V _{HYS} Schmitt Trigger Input Voltage Hysteresis		5.0 V I/O			0.12 × V _{DD}		mV
		Reset pin		_	0.12 × V _{DD}	_	mV
		5.0 V I/O 4	mA drive, V_{OL} = 0.6 V	4	—	—	mA
	Low Level Output Current	5.0 V I/O 8	mA drive, V_{OL} = 0.6 V	8	—	—	mA
	(GPIO Sink Current)	5.0 V I/O 1	2 mA drive, V_{OL} = 0.6 V	12	—	—	mA
		5.0 V I/O 1	6 mA drive, V _{oL} = 0.6 V	16	—		mA
	High Level Output Current	5.0 V I/O 4 mA drive, $V_{OH} = V_{DD} - 0.6 V$		_	4		mA
он		5.0 V I/O 8 mA drive, V_{OH} = V_{DD} - 0.6 V			8		mA
ОН	(GPIO Source Current)	5.0 V I/O 12 mA drive, V _{OH} = V _{DD} - 0.6 V			12		mA
		5.0 V I/O 16 mA drive, V_{OH} = V_{DD} - 0.6 V			16	—	mA
		5.0 V 4 mA drive I/O, I_{OL} = 4 mA			—	0.6	V
	Low Level Output Voltage	5.0 V 8 mA drive I/O, I_{OL} = 8 mA		—	—	0.6	V
Vol		5.0 V 12 mA drive I/O, I _{OL} = 12 mA			—	0.6	V
		5.0 V 16 mA drive I/O, I _{OL} = 16 mA			—	0.6	V
		5.0 V 4 mA	drive I/O, I _{OH} = 4 mA	V _{DD} - 0.6	_	—	V
		5.0 V 8 mA drive I/O, I _{OH} = 8 mA		V _{DD} - 0.6	_	_	V
V _{он}	High Level Output Voltage	5.0 V 12 mA drive I/O, I _{OH} = 12 mA		V _{DD} - 0.6	_	_	V
		5.0 V 16 m	V _{DD} - 0.6	_	_	V	
R _{PU}	Internal Pull-up Resistor	V _{DD} = 5.0 V	1	—	50	—	kΩ
R _{PD}	Internal Pull-down Resistor	V _{DD} = 5.0 V	1		50	_	kΩ

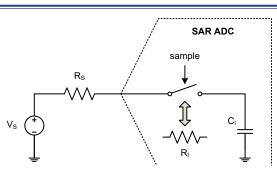

ADC Characteristics

Table 28. ADC Characteristics

10010 201	Abo onaracteristics	1	r _A = 25 °0	C, unless	otherwis	se specified
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDA}	Operating Voltage	_	2.5	5.0	5.5	V
VADCIN	A/D Converter Input Voltage Range	_	0		V_{REF^+}	V
$V_{\text{REF+}}$	A/D Converter Positive Reference Voltage	_		_	V _{DDA}	V
I _{ADC}	Current Consumption	V _{DDA} = 5.0 V, 500 ksps		1.4	1.5	mA
I _{ADC_DN}	Power Down Current Consumption	V _{DDA} = 5.0 V			0.1	μA
f _{ADC}	A/D Converter Clock Frequency	_	0.7		8	MHz
fs	Sampling Rate	_	50	_	500	ksps
t _{DL}	Data Latency	_	_	12.5	_	1/f _{ADC} Cycles
t _{s&H}	Sampling & Hold Time	_		3.5	_	1/f _{ADC} Cycles
t _{ADCCONV}	A/D Converter Conversion Time	ADST[7:0] = 2		16	_	1/f _{ADC} Cycles
Rı	Input Sampling Switch Resistance	_		—	1	kΩ
Cı	Input Sampling Capacitance	No pin/pad capacitance included		4	_	pF
t _{su}	Startup Time	—	—	—	1	μs
Ν	Resolution	—	—	12	—	Bits
INL	Integral Non-linearity Error	f_{s} = 500 ksps, V _{DDA} = 5.0 V		±2	±5	LSB
DNL	Differential Non-linearity Error	f_{s} = 500 ksps, V _{DDA} = 5.0 V	_	±1	_	LSB
Eo	Offset Error	_		_	±10	LSB
E _G	Gain Error	—			±10	LSB

Note: 1. Data based on characterization results only, not tested in production.

2. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where C₁ is the storage capacitor, R₁ is the resistance of the sampling switch and R_s is the output impedance of the signal source V_s. Normally the sampling phase duration is approximately, 3.5/f_{ADC}. The capacitance, C₁, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to V_s for accuracy. To guarantee this, R_s is not allowed to have an arbitrarily large value.

Figure 25. ADC Sampling Network Model

The worst case occurs when the extremities of the input range (0 V and V_{REF+}) are sampled consecutively. In this situation a sampling error below ¹/₄ LSB is ensured by using the following equation:

$$R_{s} < \frac{3.5}{f_{ADC}C_{1}ln(2^{N+2})} - R_{I}$$

Where f_{ADC} is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model.

If, in a system where the A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, R_s may be larger than the value indicated by the equation above.

Internal Reference Voltage Characteristics

Table 29. Internal Reference Voltage Characteristics

 T_{A} = 25 °C, unless otherwise specified.

Symbol	Parameter	Co	onditions	Min.	Тур.	Max.	Unit
V _{DDA}	Operating Voltage		2.8	—	5.5	V	
		$V_{DDA} \ge 2.8 \text{ V}$	VREFSEL[1:0] = 00	2.44	2.50	2.56	
V	Factory Trimming, @ $T_A = 25 \degree C$	V _{DDA} ≥ 3.3 V	VREFSEL[1:0] = 01	2.92	3.00	3.08	V
		V _{DDA} ≥ 4.3 V	VREFSEL[1:0] = 10	3.90	4.00	4.10	V
		V _{DDA} ≥ 4.8 V	VREFSEL[1:0] = 11	4.39	4.50	4.61	
ACC _{VREF}	Reference Voltage Accuracy after Trimming	V _{DDA} = 2.8 V ~ V _{REF} = 2.5 V, T	-2		+2	%	
t _{STABLE}	Reference Voltage Stable Time		—	_	_	100	ms
t _{SREFV}	ADC Sampling Time when Reading Reference Voltage		10	_	_	μs	
I _{DD}	Operating Current			50	70	μA	
	Power Down Current		—	_	_	0.01	μA

Note: 1. Data based on characterization results only, not tested in production.

2. The trimming bits of the internal reference voltage are 7-bit resolution.

SCTM Characteristics

Table 30. SCTM Characteristics

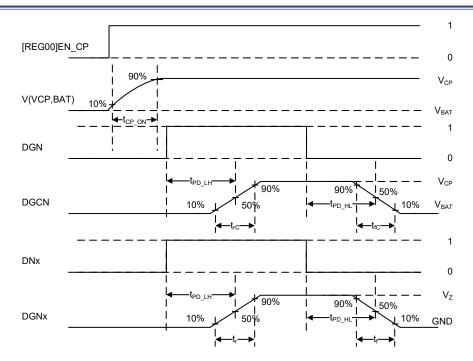
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{TM}	Timer Clock Source for SCTM		—	—	f _{PCLK}	MHz
t _{RES}	Timer Resolution Time		1	—	_	1/f _{TM}
f _{EXT}	External Signal Frequency on Channel	_	—	—	1/2	f _{тм}
RES	Timer Resolution	—	—	—	16	Bits

Individual Cell Voltage Monitor Electrical Characteristics

Table 31. Individual Cell Voltage Monitor Electrical Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Supply and Inj	put					
V _{IN}	Supply Voltage		7.5	—	36	V
I _{IN(STB)}	Supply Current (Standby)	EN_S = EN_VREF = IMCE = ISCE = '0', EN_OTD = '0', DN0 = DN1 = DCN = '0'		3.5	6	μA
I _{IN(STB_DSG)}	VIN Supply Current with DGN0 and Short Current Detection is Activated	EN_S = EN_VREF = IMCE = EN_OTD = '0', ISCE = '1', DN0 = '1', DN1 = DCN = '0'		18	20	μA
I _{OPR_DGNx}	VIN Operating Current when DGN0 and DGN1 Outputs are On	DN0 = DN1 = '1', DCN = '0'		15	_	μA
I _{SLP}	Standby Current in SLEEP Mode	SLP1 = '0', SLP0 = '1', V _{HVWK} = 0 V	_	0.1	0.2	μA
Voltage Regula	ator					
V _{REFO}	Regulator Output Voltage	I _{LOAD} = 10 mA	4.95	5	5.05	V
I _{REG}	Regulator Maximum Output Current	V _{IN} = 7.5 V, T _A = - 40 ~ 85 °C	50	_	_	mA
ΔV_{REG}	Load Regulation	I _{LOAD} = 0 ~ 50 mA	—		50	mV
$rac{\Delta V_{REG}}{(V_{REG} \times \Delta V_{IN})}$	Line Regulation	V _{IN} = 7.5 ~ 36 V, I _{LOAD} = 10 mA	_	0.02	_	%/V
$\frac{\Delta V_{REG}}{(V_{REG} \times \Delta T_A)}$	V _{REG} Temperature Coefficient	I _{LOAD} = 1 mA, T _A = -40 ~ 85°C	_	±100	_	ppm °C
R _{DIS}	V _{REG} Discharge Resistance	$\begin{split} SLP1 &= `0`, SLP0 = `1', V_{REG} = 1 V, \\ I_{REG1} \text{ denotes VREG input current} \\ at V_{REG} &= 1 V, R_{DIS} = V_{REG} / I_{REG1} \end{split}$	_	330	_	Ω
Cell Balancer		·				
D	Cell Balance Resistance	V_{Bi} = 4.5 V (i = 1 ~ 8), VBATi series resistors = 0 Ω	80	110	140	Ω
R _{CB}		V_{Bi} = 2.5 V (i = 1 ~ 8), VBATi series resistors = 0 Ω	120	160	200	Ω
Reference Vol	tage					
V _{REFO}	Reference Voltage	EN_VREF = '1'	2.492	2.5	2.508	V
$\frac{\Delta V_{\text{REFO}}}{\left(V_{\text{REFO}} \times \Delta T_{\text{A}}\right)}$	VREFO Temperature Coefficient	I _{LOAD} = 1 μA, T _A = -40 ~ 85 °C	_	_	±15	mV
I _{VREFO_SOUR}	VREFO Pin Output Source Current	C_{VREFO} = 0.1 µF. Peak current at EN_VREF '0' \rightarrow '1' rising edge		2	_	mA
I _{VREFO_SINK}	VREFO Pin Output Sink Current	$C_{VREFO} = 0.1 \ \mu\text{F}$. Peak current at EN_VREF '1' \rightarrow '0' falling edge	_	1	—	mA
$t_{s}V_{REFO}$	VREFO Pin Settling Time	Settling time from $V_{REFO} = 0$ V to 2.475 V. $C_{VREFO} = 30$ pF		20	30	μs

R _{PD}	DN0, DN1, DCN Pull Down Resistance	—	_	370		kΩ
V _{L(INTB)}	INTB 'Low' Output Voltage	Load current = 500 μ A, V _{REG} = 5V	_	—	0.1	V



Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
R _{PU_INTB}	INTB Pulled High to VREG Resistance	_	_	50	_	kΩ
High Voltage V	Vake-Up	1				
Vwkth	HVWK1 and HVWK2 Threshold Voltage	_	_	5.5	_	V
T _{WKDB}	HVWK1 and HVWK2 Debounce Time	_	1	_	_	ms
I _{WK}	HVWK1 and HVWK2 Input Current	V _{HVWK} = 36 V	—	50	_	μA
Cell Voltage M	onitor	1				
V _{Bi}	Cell Voltage	i = 1 ~ 8	1.5	_	4.5	V
V _{B(MIN)}	Input Voltage between VBATi and VBATi-1 for Cell Voltage Monitoring	_	_	1.5	_	V
I _{Bi(PWR)}	Cell Input Leakage Current when VIN Powered		-0.1	_	0.1	μA
I _{Bi(ACT)}	Cell Input Current when Voltage Monitoring	V _{Bi} = 4.2 V × i. EN_S bit = '1'. V _{IN} = 36 V. i = 1 ~ 8	_	15	_	μA
V	Cell Voltage Monitor Output	$V_{Bi} - V_{Bi-1} = 4.2 \text{ V. } i = 1 \sim 8,$ $T_A = 25^{\circ}\text{C}$	2.094	2.100	2.106	V
Vout_vm	Accuracy	$V_{Bi} - V_{Bi-1} = 4.2 V. i = 1 \sim 8.$ $T_A = -40 \sim 85^{\circ}C$	2.092	2.100	2.108	V
I _{VOUT_SOUR}	Cell Voltage Monitor Output Source Current	$ \begin{array}{l} V_{Bi} - V_{Bi-1} = 4.2 \ V. \ i = 1 \sim 8. \\ C_{VOUT} = 0.1 \ \mu\text{F}, \ \text{Peak current at} \\ \text{EN}_S \ `0' \rightarrow `1' \ \text{rising edge} \end{array} $	_	2	_	mA
I _{vout_sink}	Cell Voltage Monitor Output Sink Current	$\begin{array}{l} V_{\text{Bi}} - V_{\text{Bi-1}} = 4.2 \text{ V. i} = 1 \sim 8. \\ C_{\text{VOUT}} = 0.1 \ \mu\text{F.} \ \text{Peak current at} \\ \text{EN}_S \ \text{`1'} \rightarrow \text{`0' falling edge} \end{array}$	_	1	_	mA
HS Gate Charg	ge Pump					
V _{CP_UVLO+}	V(VCP, BAT) Turn On Level	V(VCP,BAT) rises	_	3	—	V
V _{CP_UVLO-}	V(VCP, BAT) Turn Off Level	V(VCP,BAT) falls	_	2.5	_	V
V _{CP}	VCP Output Voltage	EN_CP = '1', BAT = V _{IN} > 13 V	V _{IN} + 10	V _{IN} + 12	V _{IN} + 16	V
t _{CP_ON}	Rising Time of the Voltage Difference between VCP and VBAT	External capacitor 22 nF between VCP and BAT. V_{IN} = 36 V, V(VCP, BAT) rises from 10 % to 90 % (V _{CP} - V _{BAT}) ^(Note)	_	25	_	ms
f _{CP}	Charge Pump Switching Frequency	EN_CP = '1'	—	600	—	kHz
Gate Drivers						
		DNx = '1', V _{IN} > 13 V	10	12	16	V
Vz	DGNx Clamp Voltage	DNx = '1', V _{IN} ≤ 13 V	_	V _{IN} - 0.7	_	V
tr	DGNx Rising Time	C _{DGNx} = 15 nF ^(Note)		0.5	1.0	μs
t _f	DGNx Falling Time	C _{DGNx} = 15 nF ^(Note)		0.5	1.0	μs
t _{PD_HL}	DGNx Falling Propagation Delay Time	C _{DGNx} = 15 nF ^(Note)	_	0.5	1.0	μs
t _{PD_LH}	DGNx Rising Propagation Delay Time	C _{DGNx} = 15 nF ^(Note)	_	0.5	1.0	μs
t _{MM}	DGNx Delay Time Mismatch	C_{DGNx} = 15 nF, t_{MM} = $ t_{PD_{LHx}} - t_{PD_{HLx}} $	_	0.5	1.0	μs

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
I _{SOURCE}	DGNx Source Current	C_{DGNx} = 1 µF, peak current at DNx '0' \rightarrow '1' rising edge	—	850	—	mA
I _{SINK}	DGNx Sink Current	C_{DGNx} = 1 µF, peak current at DNx '1' \rightarrow '0' falling edge	_	850	_	mA
R _{PL_S}	DGNx Pull Low Resistance at Sleep and Standby Mode	DNx = '0', SLP1 = '0' & SLP0 = '1' & HVWKx = '0' or HVWKx = '1', resistance between DGNx and GND	_	10		Ω
V _{DGCN_ON}	DGCN Gate Drive Turn-on Voltage	EN_CP = '1', DCN = '1'	_	V _{CP}	—	V
V _{DGCN_OFF}	DGCN Gate Drive Turn-off Voltage	EN_CP = '1', DCN = '0'	—	V_{IN}	—	V
R _{DGCN_ON}	DGCN Gate Drive Turn-on Resistance	EN_CP = '1', DCN = '1'	—	2	—	kΩ
R _{DGCN_OFF}	DGCN Gate Drive Turn-off Resistance	EN_CP = '1', DCN = '0'	—	150	—	Ω
t _{rC}	Rising Time of the Voltage Difference between DGCN and BAT	$\begin{split} & \text{EN}_{\text{CP}} = \text{`1', } C_{\text{DGCN-BAT}} = 15 \text{ nF}, \\ & \text{V}_{\text{IN}} = 36 \text{ V}, \text{ V}(\text{DGCN, BAT}) \text{ rises} \\ & \text{from 10 \% to 90 \%} \\ & (\text{V}_{\text{DGCN}} - \text{V}_{\text{BAT}})^{(\text{Note})} \end{split}$		220		μs
t _{rC}	Falling Time of the Voltage Difference between DGCN and BAT	$\begin{split} & \text{EN_CP} = `1', \ \text{C}_{\text{DGCN-BAT}} = 15 \ \text{nF}, \\ & \text{V}_{\text{IN}} = 36 \ \text{V}, \ \text{V}(\text{DGCN}, \ \text{BAT}) \ \text{falls} \\ & \text{from 90 \% to 10 \%} \\ & (\text{V}_{\text{DGCN}} - \text{V}_{\text{BAT}})^{(\text{Note})} \end{split}$		5		μs

Note: These parameters are periodically sampled but not 100% tested.

Figure 26. Individual Cell Voltage Monitor Characteristics

Table 32. Individual Cell Voltage Monitor Electrical Characteristics (ISP-ISN Shunt Resistor = $5 \text{ m}\Omega$)

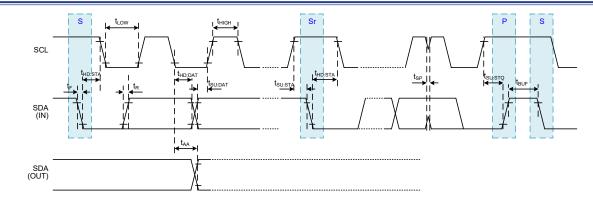
V_{IN} = 36 V, C_{REG} = 4.7 µF, T_{A}	= 25 °C, unless otherwise specified
--	-------------------------------------

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Current N	lonitor					
0		IMCE = '1', IAR = '0', T _A = 25 °C	9.7	10	10.3	V/V
$G_{IM(R10)}$	IMON Output Voltage Amplify	IMCE = '1', IAR = '0', T _A = -40 ~ 85 °C	9.5	10	10.5	V/V
<u> </u>	Rate	IMCE = '1', IAR = '1', T _A = 25 °C	48.5	50	51.5	V/V
$G_{IM(R50)}$		IMCE = '1', IAR = '1', T _A = -40 ~ 85 °C	47.5	50	52.5	V/V
		IMCE = '1', IAR = '0', V_{REG} = 5 V, V_{REFO} = 2.5 V, shunt resistor = 5 m Ω	-6	_	36	А
I _{MR(R10)}		IMCE = '1', IAR = '0', V_{REG} = 5 V, V_{REFO} = 2.5 V, shunt resistor = 2 m Ω	-15		90	А
1	- Current Monitor Range	IMCE = '1', IAR = '1', V_{REG} = 5 V, V_{REFO} = 2.5 V, shunt resistor = 5 m Ω	-1.2	_	6.6	А
I _{MR(R50)}		IMCE = '1', IAR = '1', V _{REG} = 5 V, V _{REF0} = 2.5 V, shunt resistor = 2 m Ω	-3.0		16.5	А
$V_{IMO(R10)}$	IMON Output Voltage at No	V_{ISP} - V_{ISN} = 0 V, IMCE = '1', ZERO = '0', IAR = '0'	0.3	0.5	0.7	V
$V_{\text{IMO}(\text{R50})}$	Sensing Current	V_{ISP} - V_{ISN} = 0 V, IMCE = '1', ZERO = '0', IAR = '1'	0.3	0.5	0.85	V
V _{IMZ(R10)}	IMON Output Voltage at	IMCE = '1', ZERO = '1', IAR = '0'	0.3	0.5	0.7	V
V _{IMZ(R50)}	ZERO State	IMCE = '1', ZERO = '1', IAR = '1'	0.3	0.5	0.85	V
$I_{\rm IMO(SOURCE)}$	IMON Output Source Current	—	100	—	—	μA
$I_{\rm IMO(SINK)}$	IMON Output Sink Current	—	100	—	—	μA
$t_{\text{IMZS}(\text{R10})}$	IMON Settling Time at ZERO	IAR = '0', ZERO = '1', timing from IMCE = '1' to V_{IMON} settled at V_{IMZ}	—	—	100	μs
t _{IMZS(R50)}	State	IAR = '1', ZERO = '1', timing from IMCE = '1' to V_{IMON} settled at V_{IMZ}	0.3 100 100 —	_	500	μs
I _{IS}	ISP, ISN Input Current	V _{ISP} = V _{ISN} = 0 V, IAR = '0', ZERO = '0'	_	-0.46	—	μA
$t_{\text{IMR}_P(\text{R10})}$	IMON Output Rising Time	IAR = '0', ZERO = '0', IMCE = '1', V_{ISN} = 0 V, V_{ISP} rises from 0 V to 0.1 V in 10 µs	_	60	_	μs
$t_{\text{IMR}_P(\text{R50})}$	(V _{ISP} >V _{ISN})	IAR = '1', ZERO = '0', IMCE = '1', $V_{ISN} = 0 V$, V_{ISP} rises from 0V to 0.1 V in 10 μ s	_	300	_	μs
$t_{IMF_P(R10)}$	IMON Output Falling Time	IAR = '0', ZERO = '0', IMCE = '1', $V_{ISN} = 0 V$, V_{ISP} falls from 0.1 V to 0 V in 10 μ s	_	60	—	μs
$t_{IMF_P(R50)}$	(V _{ISP} >V _{ISN})	IAR = '1', ZERO = '0', IMCE = '1', V_{ISN} = 0 V, V_{ISP} falls from 0.1 V to 0 V in 10 μ s		300	_	μs
$t_{\text{IMR}_N(\text{R10})}$	IMON Output Rising Time	IAR = '0', ZERO = '0', IMCE = '1', $V_{ISP} = 0 V$, V_{ISN} rises from 0 V to 0.1 V in 10 µs		60		μs
$t_{IMR_N(R50)}$	(V _{ISP} <v<sub>ISN)</v<sub>	IAR = '1', ZERO = '0', IMCE = '1', $V_{ISP} = 0 V$, V_{ISN} rises from 0 V to 0.1 V in 10 µs		300		μs
$t_{IMF_N(R10)}$	IMON Output Falling Time	IAR = '0', ZERO = '0', IMCE = '1', $V_{ISP} = 0 V$, V_{ISN} falls from 0.1 V to 0 V in 10 μ s		30	_	μs
$t_{\rm IMF_N(R50)}$	(V _{ISP} < V _{ISN})	IAR = '1', ZERO = '0', IMCE = '1', $V_{ISP} = 0 V$, V_{ISN} falls from 0.1 V to 0 V in 10 μ s	_	30		μs

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Short-Cu	rrent Detection					
V _{SCTH}	Short Circuit Detection Threshold voltage	ISCE = '1', SC_[2:0] = 0b001		105		mV
t _{SCDB}	Short Circuit Detection Debounce Time	ISCE = '1', TD_[4:0] = 0b00001 (default value)		6.32		μs
t _{SCPD}	Short Circuit Detection Propagation Delay Time	$\label{eq:ISCE} \begin{array}{l} \text{ISCE} = `1', \mbox{TD}[4:0] = 0b00000, \mbox{INTB sink} \\ \mbox{current} = 50 \ \mu\text{A}. \ \mbox{Propagation delay time} \\ \mbox{from $V_{\text{ISP}} > V_{\text{SCTH}}$ to INTB pulled `Low'} \end{array}$	_	1		μs
Over-Tem	perature Detection					
		EN_OTD = '1', OTDTH[1:0] = 0b00		85		°C
	Over temperature Detection	EN_OTD = '1', OTDTH[1:0] = 0b01	—	100	—	°C
T_{OTD}	Over-temperature Detection Threshold	EN_OTD = '1', OTDTH[1:0] = 0b10	—	125	—	°C
		EN_OTD = '1', OTDTH[1:0] = 0b11 (default value)		150	_	°C
T _{HYS}	Over-temperature Detection Hysteresis	EN_OTD = '1'	_	20		°C

Individual Cell Voltage Monitor I²C Interface Characteristic

Table 33.	Individual	Cell	Voltage	Monitor	ľC	Interface	Charac	teristi	С


 V_{IN} = 36 V and T_{A} = 25°C, unless otherwise specified

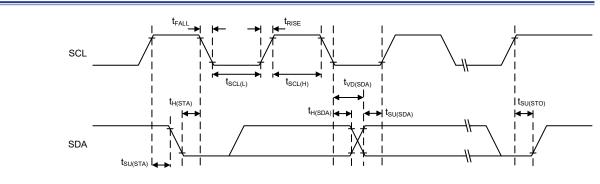
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
f _{SCL}	Clock Frequency		_	_	400	kHz
t _{BUF}	Bus Free Time	Bus free time between STOP and START	1.3	_		μs
$t_{\text{HD: STA}}$	START Hold Time	After this period, the first clock pulse is generated	0.6	_	_	μs
t _{LOW}	SCL Low Time		1.3			μs
t _{HIGH}	SCL High Time		0.6			μs
t _{su: sta}	START Setup Time	Only relevant for REPEATED START	0.6			μs
t _{HD: DAT}	Data Hold Time		0			ns
t _{su: dat}	Data Setup Time		100			ns
t _{R_I2C}	Rising Time	SDA and SCL	_		0.3	μs
t _{F_I2C}	Falling Time	SDA and SCL	_		0.3	μs
t _{su: sto}	STOP Setup Time		0.6			μs
t _{AA}	Output Valid from Clock				0.9	μs
t _{SP}	Input Filter Time Constant	SDA and SCL noise suppression time		_	20	ns
t _{out}	I ² C Time-out	Default setting	_	32	_	ms

Note: These parameters are periodically sampled but not 100% tested.

6

Figure 27. Individual Cell Voltage Monitor I²C Timing Diagram

I²C Characteristics


Table 34. I²C Characteristics

Cumhal	Devenenter	Standa	rd Mode	Fast	Mode	Fast Plu	us Mode	11
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{SCL}	SCL Clock Frequency	_	100		400	_	1000	kHz
t _{SCL(H)}	SCL Clock High Time	4.5		1.125		0.45		μs
t _{SCL(L)}	SCL Clock Low Time	4.5		1.125		0.45		μs
t _{FALL}	SCL and SDA Fall Time		1.3		0.34		0.135	μs
t _{RISE}	SCL and SDA Rise Time		1.3		0.34		0.135	μs
$t_{\rm SU(SDA)}$	SDA Data Setup Time	500		125		50	_	ns
	SDA Data Hold Time ⁽⁵⁾	0		0		0	_	ns
t _{H(SDA)}	SDA Data Hold Time (6)		1.6		0.475		0.25	μs
$t_{\text{VD(SDA)}}$	SDA Data Valid Time		1.6		0.475		0.25	μs
t _{SU(STA)}	START Condition Setup Time	500		125		50		ns
t _{H(STA)}	START Condition Hold Time	0	_	0	_	0	_	ns
$t_{\text{SU(STO)}}$	STOP Condition Setup Time	500	—	125	—	50	_	ns

Note: 1. Data based on characterization results only, not tested in production.

- 2. To achieve 100 kHz standard mode, the peripheral clock frequency must be higher than 2 MHz.
- 3. To achieve 400 kHz fast mode, the peripheral clock frequency must be higher than 8 MHz.
- 4. To achieve 1 MHz fast plus mode, the peripheral clock frequency must be higher than 16 MHz.
- 5. The above characteristic parameters of the I^2C bus timing are based on: COMBFILTEREN = 0 and SEQFILTER = 00.
- 6. The above characteristic parameters of the I^2C bus timing are based on: COMBFILTEREN = 1 and SEQFILTER = 00.

Figure 28. I²C Timing Diagram

SPI Characteristics

Table 35. SPI Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
SPI Mast	er Mode					
f _{scк}	SPI Master Output SCK Clock Frequency			_	f _{PCLK} /2	MHz
$t_{\text{SCK}(H)} \\ t_{\text{SCK}(L)}$	SCK Clock High and Low Time	_	t _{sск} /2 - 2	_	t _{sск} /2 + 1	ns
t _{V(MO)}	Data Output Valid Time	_		_	5	ns
t _{H(MO)}	Data Output Hold Time	_	2	—	—	ns
t _{SU(MI)}	Data Input Setup Time	_	5	—	—	ns
t _{H(MI)}	Data Input Hold Time	—	5	—	—	ns
SPI Slave	Mode					
f _{scк}	SPI Slave Input SCK Clock Frequency	Slave mode, SPI peripheral clock frequency f _{PCLK}	_	_	f _{PCLK} /З	MHz
Duty _{sck}	SPI Slave Input SCK Clock Duty Cycle	_	30		70	%
t _{SU(SEL)}	SEL Enable Setup Time	_	3 t _{PCLK}	_	—	ns
t _{H(SEL)}	SEL Enable Hold Time	_	2 t _{PCLK}	_	—	ns
t _{A(SO)}	Data Output Access Time	_		_	3 t _{PCLK}	ns
t _{DIS(SO)}	Data Output Disable Time	_	_	_	10	ns
t _{V(SO)}	Data Output Valid Time	_		_	25	ns
t _{H(SO)}	Data Output Hold Time	_	15		_	ns
t _{su(si)}	Data Input Setup Time	_	5		_	ns
t _{H(SI)}	Data Input Hold Time	_	4	_	_	ns

Note: 1. f_{SCK} is SPI output/input clock frequency and $t_{SCK} = 1/f_{SCK}$.

2. f_{PCLK} is SPI peripheral clock frequency and $t_{PCLK} = 1/f_{PCLK}$.

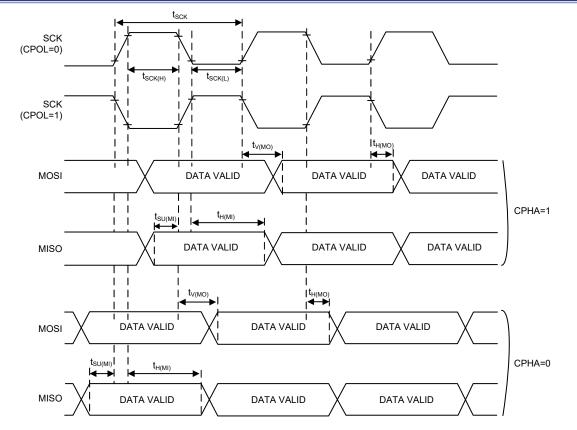


Figure 29. SPI Timing Diagram – SPI Master Mode

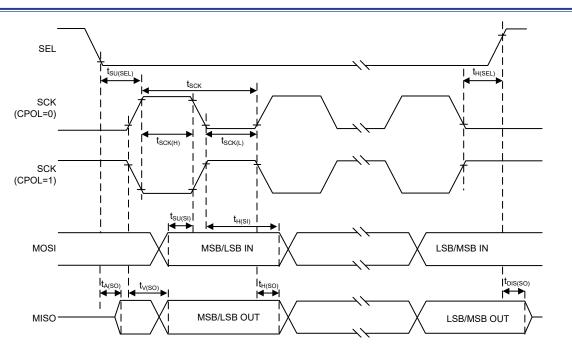
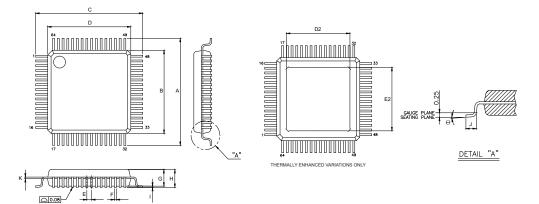


Figure 30. SPI Timing Diagram – SPI Slave Mode with CPHA = 1

7 Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/Carton Information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

64-pin LQFP-EP (7mm × 7mm) Outline Dimensions

Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
A	0.354 BSC			
В	0.276 BSC			
С	0.354 BSC			
D	0.276 BSC			
E	0.016 BSC			
D2	0.198	—	0.216	
E2	0.198	—	0.216	
F	0.005	0.007	0.009	
G	0.053	0.055	0.057	
Н	—	—	0.063	
I	0.002	—	0.006	
J	0.018	0.024	0.030	
K	0.004	—	0.008	
α	0°	—	7°	

Symbol	Dimensions in mm			
	Min.	Nom.	Max.	
А	9.00 BSC			
В	7.00 BSC			
С	9.00 BSC			
D	7.00 BSC			
E	0.40 BSC			
D2	5.03	—	5.48	
E2	5.03	_	5.48	
F	0.13	0.18	0.23	
G	1.35	1.40	1.45	
Н	_	_	1.60	
I	0.05	_	0.15	
J	0.45	0.60	0.75	
К	0.09	_	0.20	
α	0°	_	7°	

Copyright[©] 2024 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.