

CHARLIE EVK HW User Guide

1VV0301670 Rev. 6 - 2021-10-14

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY "OTHER CODE"), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

APPLICABILITY TABLE

PRODUCTS

■ CHARLIE EVALUATION KIT

Contents

h	10	т.		_	•
Г	V()		CI	_	~

COPYRIGH	HTS	2
COMPUTE	R SOFTWARE COPYRIGHT	S 2
USAGE AN	ND DISCLOSURE RESTRICT	IONS3
l.	License Agreements	3
II.	Copyrighted Materials	3
III.	High Risk Materials	3
IV.	Trademarks	3
V.	Third Party Rights	3
APPLICAB	BILITY TABLE	4
CONTENT	s	5
1.	INTRODUCTION	7
1.1.	Scope	7
1.2.	Audience	7
1.3.	Contact Information, Support	7
1.4.	Text Conventions	9
1.5.	Related Documents	10
2.	OVERVIEW	11
NOTICE	13	
3.	CONNECTORS	14
3.1.	Arduino MKR format Pin-out	14
3.2.	MCU Native USB Connector	16
3.3.	ME310 Native USB Connecto	or17
3.4.	MCU DEBUG connector	18
3.5.	SIM Connectors	19
3.6.	ANTENNA Connectors	20
4.	CIRCUIT BLOCKS	21
4.1.	MCU to ME310 serial connec	tion21
4.2.	BMA400 Accelerometer	22
4.3.	MCU Buttons and LEDs	23
4.4. 1VV0301670		24 Page 5 of 37

4.5.	MCU Reset Button	25
4.6.	Battery Charger	26
4.7.	3V3 Power Supply	28
4.8.	1V8 Power Supply	29
4.9.	3V8 Power Supply	30
4.10.	ME310 ON/OFF Switch	31
4.11.	MCU RTC Clock	31
5.	MECHANICAL DESIGN	32
5. 5.1.	MECHANICAL DESIGN	
		32
5.1.	Drawing	32
5.1. 6.	Drawing SAFETY RECOMMENDATIONS	32 33

1. INTRODUCTION

1.1. Scope

Scope of this document is to describe the hardware components of the CHARLIE EVK board based on Telit ME310G1-WW module and ATSAMD21G18 MCU from Microchip.

1.2. Audience

This document is intended for Telit customers, who are integrators, about to implement their applications using our CHARLIE EVK board.

Design of the Charlie Evaluation Kit is heavily optimized for small size, it is not a reference design for generic use.

Before copying it "as is", please contact Telit Application Engineering for a design review and suggestions to optimize it according to your design constraints.

1.3. Contact Information, Support

For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com
- TS-SRD@telit.com

Alternatively, use:

http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.5. Related Documents

• ME310G1 HW User Guide, 1VV0301351

2. OVERVIEW

The aim of this document is to describe the "CHARLIE" EVK board based on Telit ME310G1-WW modem module and ATSAMD21G18 MCU from Microchip.

The CHARLIE board is an Arduino MKR form factor evaluation board that can be programmed with Arduino IDE or with native tools for ATSAMD21 from Microchip.

The CHARLIE EVK board is powered either by

- onboard USB connectors
- VIN pin on connector

Using either the onboard 3.8V DC power supply or by a 3.7 V LIPO battery.

All GPIO pins of Telit ME310G1-WW levels are set to 1.8 V, while all GPIO from ATSAMD21 MCU are set at 3.3 V.

This document lists and describes circuit building blocks and connectors

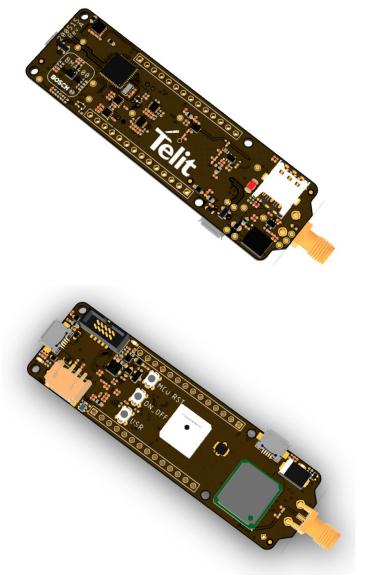


Figure 1 - CHARLIE EVK Board

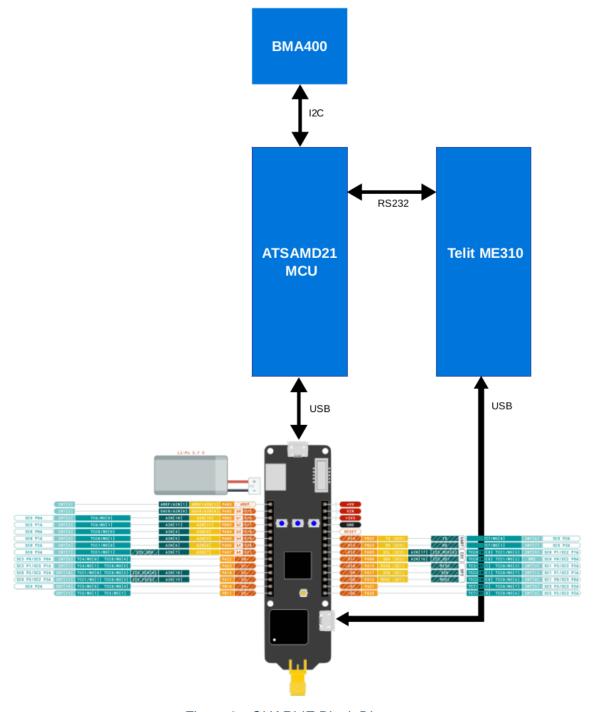


Figure 2 - CHARLIE Block Diagram

The CHARLIE EVK has 2 USB connectors:

- The first USB connector is located at opposite site of ME310 module and SMA connector is connected to the ATSAMD21 microcontroller
- The second USB connector is located near to the ME310 module and SMA connector is connected to the ME310 module

ATSAMD21 MCU communicates with Telit ME310 module using an asynchronous serial connection.

The ATSAMD21 MCU is connected to the onboard BMA400 accelerometer from Bosch Sensortec.

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information presented in this document is believed to be accurate and reliable. However, no responsibility is assumed by Telit Communications S.p.A. for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Telit Communications S.p.A. other than for circuitry embodied in Telit products. This document is subject to change without notice.

3. CONNECTORS

3.1. Arduino MKR format Pin-out

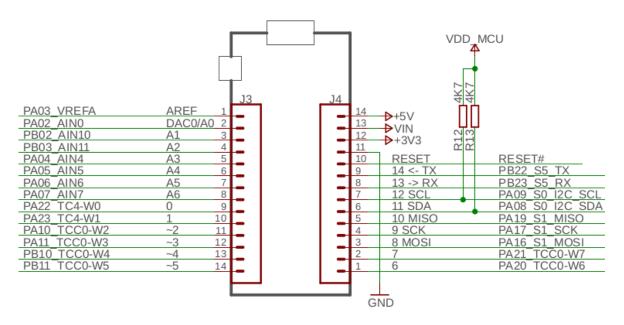


Figure 3 - Arduino MKR Pinout

Pin	Signal	I/O	Function	Туре	MCU I/O
POWER SU	PPLY				
J4,14	+5V	0	5.0 V I/O Level		
J4,13	VIN	I	External Power Input		
J4,12	+3V3	0	3.3 V I/O Level		
J4,11	GND	-			
GPIO INTERFACE @ 3V3					
J4,10	RESET	I	MCU Reset		
J4,9	D14	I/O	GPIO/USART TX		PB22
J4,8	D13	I/O	GPIO/USART RX		PB23
J4,7	D12	I/O	GPIO/I2C SCL		PA09

J4,6	D11	I/O	GPIO/I2C SDA	PA08
J4,5	D10	I/O	GPIO/SPI MISO	PA19
J4,4	D9	I/O	GPIO/SPI SCK	PA17
J4,3	D8	I/O	GPIO/SPI MOSI	PA16
J4,2	D7	I/O	GPIO/PWM	PA21
J4,1	D6	I/O	GPIO/PWM	PA20
J3,14	D5	I/O	GPIO/PWM	PB11
J3,13	D4	I/O	GPIO/PWM	PB10
J3,12	D3	I/O	GPIO/PWM	PA11
J3,11	D2	I/O	GPIO/PWM	PA10
J3,10	D1	I/O	GPIO	PA23
J3,9	D0	I/O	GPIO	PA22
J3,8	D21/A6	I/O	GPIO/AIN[7]	PA07
J3,7	D20/A5	I/O	GPIO/AIN[6]	PA06
J3,6	D19/A4	I/O	GPIO/AIN[5]	PA05
J3,5	D18/A3	I/O	GPIO/AIN[4]	PB04
J3,4	D17/A2	I/O	GPIO/AIN[11]	PB03
J3,3	D16/A1	I/O	GPIO/AIN[10]	PB02
J3,2	D15/A0	I/O	GPIO/AIN[0]	PA02
J3,1	AREF	I	AREF/AIN[1]	PA03

3.2. MCU Native USB Connector

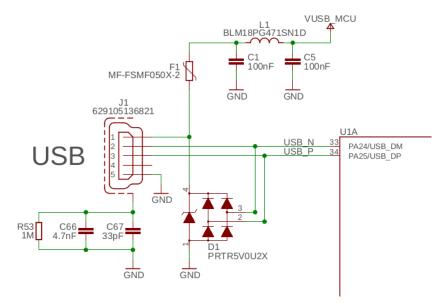


Figure 4 – ATSAMD21 Native USB

Pin	Signal	I/O	Function	Туре	Comment
POW	ER SUPPLY				
J1,1	5V	I			
J1,5	GND	-			
USB	HS 2.0 COMMU	NICATIO	ON PORT (FW upgrade and I	Data)	
J1,2	USB_DM	I/O	USB differential Data (-)		PA24
J1,3	USB_DP	I/O	USB differential Data (+)		PA25
J1,4	USB OTG ID	N.C.			

The J1 USB plug is connected to the ATSAMD21 MCU native USB port. The board is protected by resettable fuse and ESD discharge.

3.3. ME310 Native USB Connector

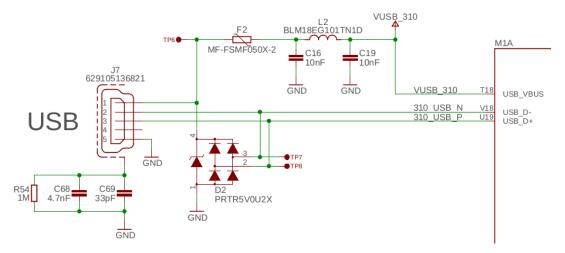


Figure 5 – ME310 Native USB

Pin	Signal	I/O	Function	Туре	ME310
POW	ER SUPPLY				
J7,1	5V	I	USB_VBUS		T18
J7,5	GND	-			
USB	HS 2.0 COMMU	NICATIO	ON PORT (FW upgrade and Da	ata)	
J7,2	USB_DM	I/O	USB differential Data (-)		V18
J7,3	USB_DP	I/O	USB differential Data (+)		U19
J7,4	USB OTG ID	N.C.			

The J7 USB plug is connected to the ME310 native USB port. The board is protected by resettable fuse and ESD discharge.

3.4. MCU DEBUG connector

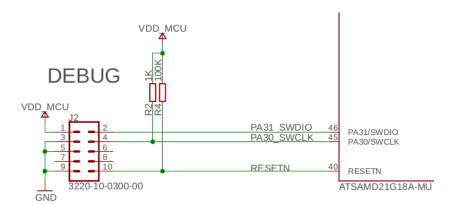


Figure 6 - DEBUG connector

Pin	Signal	I/O	Function	Туре	Comment
POWE	R SUPPLY				
J2,1	3V3	I			
J2,3	GND	-			
J2,5	GND	-			
J2,9	GND	-			
DEBU	3 Interface				
J2,2	SWDIO	I/O	DEBUG DATA		PA31
J2,4	SWCLK	I	DEBUG CLOCK		PA30
J2,10	RESETN	I	RESET		RESETN

3.5. SIM Connectors

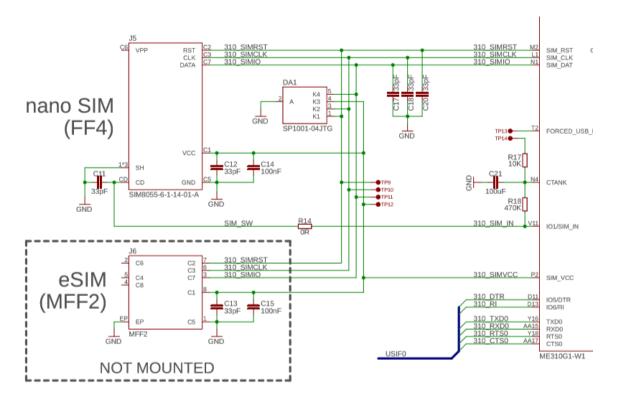


Figure 7 - SIM Sockets

The board supports a micro SIM socket and includes pads to solder an eSIM: both inputs are ESD protected.

3.6. ANTENNA Connectors

SMA 4G

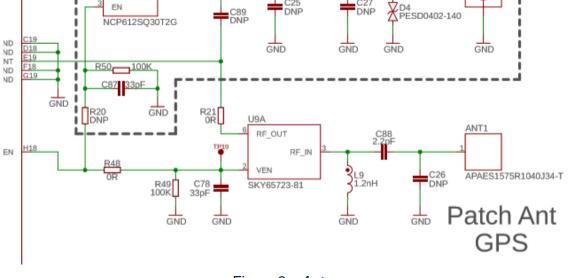


Figure 8 – Antennas

The 4G Cellular antenna signal is connected to the J8 SMA connector.

The GNSS Signal can be connected either to the uFL connector J9 or the GPS Patch Antenna, which is enabled by default.

In order to disable the Patch Antenna and connect an external GPS antenna to J9, remove R48 and R21 resistors and solder a 0-ohm resistor on R20 pads and a 100 pF capacitor on C89 pads.

4. CIRCUIT BLOCKS

4.1. MCU to ME310 serial connection

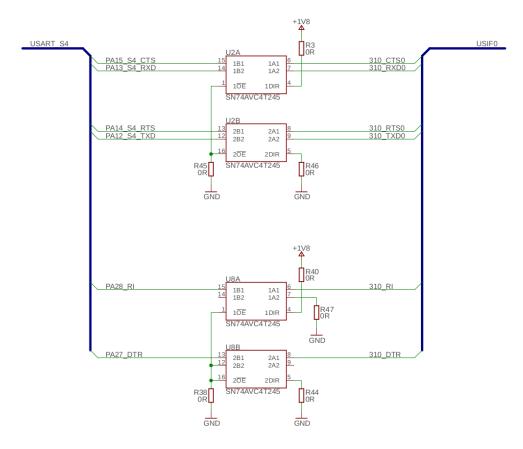


Figure 9 – MCU to ME310 Serial Connection

The ATSAMD21 MCU GPIO works at 3.3 V while the ME310 GPIO levels are 1.8 V. To connect the two devices using a serial connection with hardware handshake, level shifters are used.

MCU Pin	MCU Direction	Function	ME310 Direction	ME310 Pin
PA15	I	CTS	0	AA17
PA13	I	RXD	0	AA15
PA14	0	RTS	I	Y18
PA12	0	TXD	I	Y16
PA28	I	RI	0	D13
PA27	0	DTR	I	D11

4.2. BMA400 Accelerometer

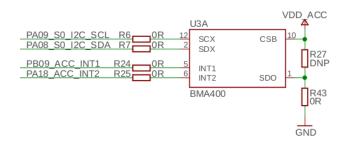


Figure 10 – BMA400 Accelerometer

The CHARLIE board mounts a Bosch Sensortech BMA400 ultra low power acceleration sensor, connected to the ATSAMD21 MCU through I2C communication.

Pin	Direction	Function
PA09	0	I2C Clock
PA08	I/O	I2C Data
PB09	I	INT1 from BMA400
PA18	I	INT2 from BMA400

4.3. MCU Buttons and LEDs

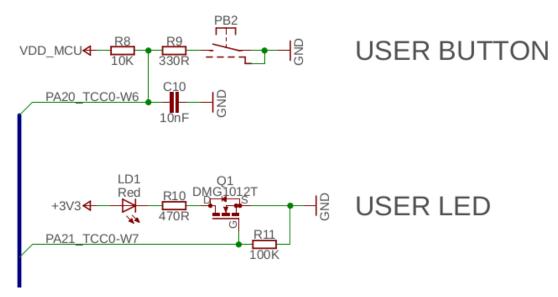


Figure 11 – ATSAMD21 Pushbuttons and Leds

The CHARLIE board has a user-available LED, LD1 and a button, PB2 connected to ATSAMD21 MCU. The led is ON when the MCU pin is high, while the button is active LOW.

Pin	Direction	Function
PA20	I	User Button
PA21	0	User RED LED

4.4. ME310 SLED

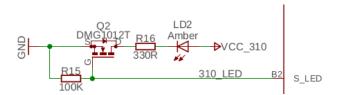


Figure 12 - ME310 SLed

The CHARLIE board has a LED, LD2 connected to ME310 S_LED pin. The led is ON when the MCU pin is high.

Pin	Direction	Function
B2	0	Amber LD2/S_LED

4.5. MCU Reset Button

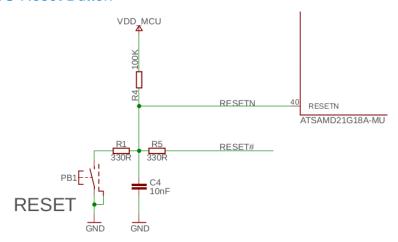


Figure 13 – RESET button

The CHARLIE board has one RESET button PB1 connected to ATSAMD21 MCU.

4.6. Battery Charger

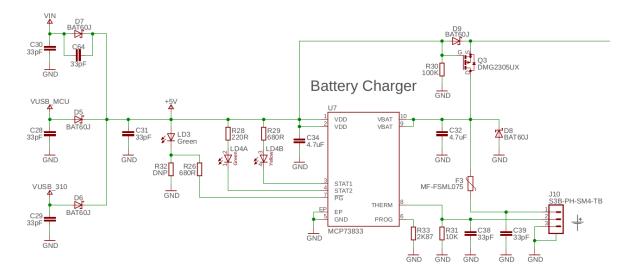


Figure 14 - Battery Charger

A +3.7 V Lipo battery (not included) connected to J10 can power the CHARLIE board.

The battery can be charged by the onboard charger, which receives +5V from the VIN connector, MCU USB Native Connector or ME310 Native USB connector.

When an external power source is present and the battery is connected, the battery is charged. The Board voltage is supplied by the external power source.

When the external power source is disconnected, the CHARLIE board is battery powered The battery charger notifies its status through the 3 LEDs:

Pin	Direction	LED	Function
PG	0	LD3 green	Power Good
STAT1	0	LD4A yellow	Charging
STAT2	0	LD4B green	Charge Complete

Powering the board through the native USB port is not recommended on long term, since it relies on the host device capability to supply the required current. Telit suggests using an external 5V DC power supply through VIN power connector or using an external battery pack Battery connector J17 is S3B-PH-SM4-TB.

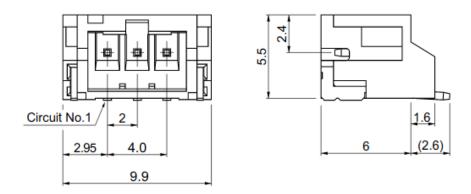


Figure 15 - Battery Connector

PIN	Function	Comment		
Battery				
1	+			
2	Temperature sensor			
3	-			

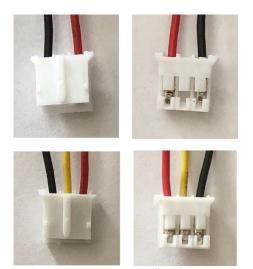


Figure 16 Connector without temperature sensor (top) and with temperature sensor (bottom)

By default, the Charlie board is configured for batteries without NTC temperature sensor.

To disable battery temperature monitoring, the 10 KOhm resistor R31 is mounted.

If a battery with NTC temperature sensor is connected to the board WITHOUT removing R31 resistor, the battery charger will not function.

To charge a battery equipped with NTC (3 wire connections), R31 must be removed.

The female connector to be connected to the battery pack is a JST PHR-3; its counterpart on the board is a S3B-PH-SM4-TB. Ready cables with the female connector can be

sourced online. As mentioned above, please note that pin number 2 (the center one) should be left unconnected if NTC sensor is not to be used.

WARNING

Use Li-Ion battery $V_{nom} = 3.7V$, $V_{chrg} = 4.2V$ Capacity >= 700 mAh

Li-Po batteries are charged at 4.2V with a current that is usually half the nominal capacity (C/2). This board has a dedicated IC that has a preset charging current of 350mAh: this means that the MINIMUM capacity of the Li-Po battery shall be 700 mAh.

It is strongly recommended that a Li-Po battery of **at least 700mAh** capacity is selected. Smaller cells will be damaged by this current and may overheat, release gasses, catch fire and explode.

A larger cell will take more time to charge but won't overheat or cause any harm.

4.7. 3V3 Power Supply

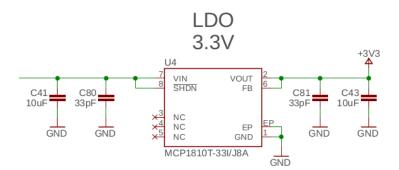


Figure 17 - 3V3 Power Supply

The CHARLIE board provides a +3.3 V power source to power:

- ATSAMD21 MCU and LEDs
- BMA400 Accelerometer
- Level Shifters

4.8. 1V8 Power Supply

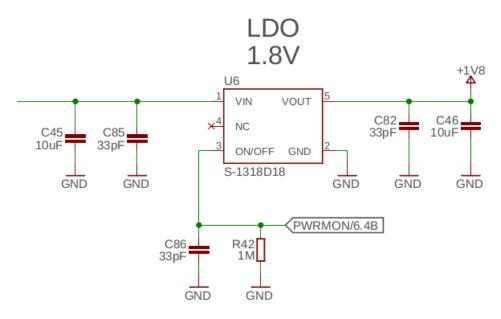


Figure 18 – ME310 internal power supply

The ME310 module is powered at 3.8 V, but all I/O pins operate at 1.8 V: the LDO provides 1.8 V level to:

- level translators
- SKY65723-81 Low-Noise Amplifier Front-End Module.

PWRMON pin on ME310 module enables the 1.8 V LDO output.

4.9. 3V8 Power Supply

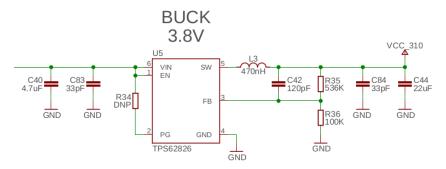


Figure 19 – ME310 3.8 V power supply

The ME310 module is powered at 3.8V, the Buck converter provides 3.8V power supply for:

- ME310 Module
- NCP612S LDO regulator for uFL GPS antenna

4.10. ME310 ON/OFF Switch

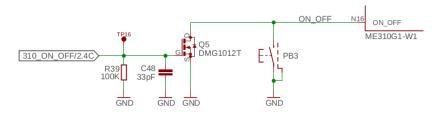
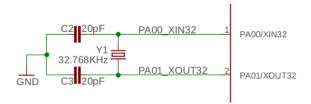
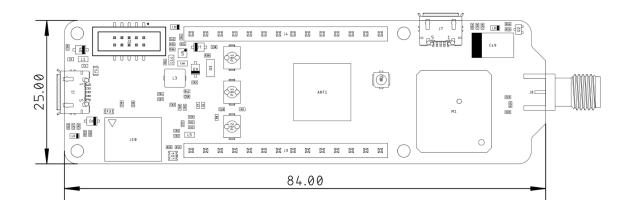


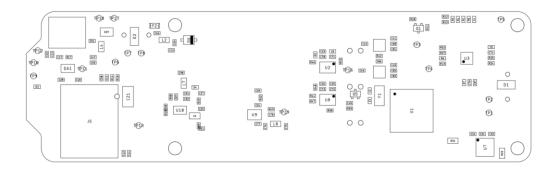
Figure 20 - ON/OFF Switch Circuit

The ON_OFF pin can be controlled by the PB3 bush-button or by the 310_ON_OFF signal that is connected to PB08 output pin of ATSAMD21 MCU.

4.11. MCU RTC Clock




Figure 21 - RTC Clock Circuit


A 32.768 kHz quartz oscillator is connected to PA00 and PA01 of ATSAMD21 MCU to provide an accurate time base for the internal RTC.

5. MECHANICAL DESIGN

5.1. Drawing

6. SAFETY RECOMMENDATIONS

6.1. READ CAREFULLY

Be sure the use of this product is allowed in the country and in the environment required. The use of this product may be dangerous and has to be avoided in the following areas:

- Where it can interfere with other electronic devices in environments such as hospitals, airports, aircrafts, etc.
- Where there is risk of explosion such as gasoline stations, oil refineries, etc. It is the
 responsibility of the user to enforce the country regulation and the specific
 environment regulation.

Do not disassemble the product; any mark of tampering will compromise the warranty validity. We recommend following the instructions of the hardware user guides for correct wiring of the product. The product has to be supplied with a stabilized voltage source and the wiring has to be conformed to the security and fire prevention regulations. The product has to be handled with care, avoiding any contact with the pins because electrostatic discharges may damage the product itself. Same cautions have to be taken for the SIM, checking carefully the instruction for its use. Do not insert or remove the SIM when the product is in power saving mode.

The system integrator is responsible for the functioning of the final product; therefore, care has to be taken to the external components of the module, as well as any project or installation issue, because the risk of disturbing the GSM network or external devices or having impact on the security. Should there be any doubt, please refer to the technical documentation and the regulations in force. Every module has to be equipped with a proper antenna with specific characteristics. The antenna has to be installed with care in order to avoid any interference with other electronic devices and has to guarantee a minimum distance from the body (20 cm). In case this requirement cannot be satisfied, the system integrator has to assess the final product against the SAR regulation.

The European Community provides some Directives for the electronic equipment introduced on the market. All of the relevant information is available on the European Community website:

http://ec.europa.eu/enterprise/sectors/rtte/documents/

The text of the Directive 99/05 regarding telecommunication equipment is available,

while the applicable Directives (Low Voltage and EMC) are available at:

http://ec.europa.eu/enterprise/sectors/electrical/

7. ACRONYMS

TTSC	Telit Technical Support Centre	
USB	Universal Serial Bus	
HS	High Speed	
DTE	Data Terminal Equipment	
UMTS	Universal Mobile Telecommunication System	
WCDMA	Wideband Code Division Multiple Access	
HSDPA	High Speed Downlink Packet Access	
HSUPA	High Speed Uplink Packet Access	
UART	Universal Asynchronous Receiver Transmitter	
HSIC	High Speed Inter Chip	
SIM	Subscriber Identification Module	
SPI	Serial Peripheral Interface	
ADC	Analog – Digital Converter	
DAC	Digital – Analog Converter	
I/O	Input Output	
GPIO	General Purpose Input Output	
CMOS	Complementary Metal – Oxide Semiconductor	
MOSI	Master Output – Slave Input	
MISO	Master Input – Slave Output	
CLK	Clock	
MRDY	Master Ready	
SRDY	Slave Ready	

CS	Chip Select	
RTC	Real Time Clock	
РСВ	Printed Circuit Board	
ESR	Equivalent Series Resistance	
VSWR	Voltage Standing Wave Radio	
VNA	Vector Network Analyzer	

8. DOCUMENT HISTORY

Revision	Date	Changes
0	2020-07-20	Initial revision
1	2020-09-02	Battery information added
2	2020-10-29	ME310 variant updated to ME310G1-WW
3	2020-01-13	Schematics updated
4	2020-01-29	Schematics updated Warning added
5	2020-02-02	MCU Buttons and Led table corrected
6	2021-10-14	Battery pack paragraph edited

SUPPORT INQUIRIES

Link to **www.telit.com** and contact our technical support team for any questions related to technical issues.

www.telit.com

Telit Communications S.p.A. Via Stazione di Prosecco, 5/B I-34010 Sgonico (Trieste), Italy

Telit IoT Platforms LLC 5300 Broken Sound Blvd, Suite 150 Boca Raton, FL 33487, USA Telit Wireless Solutions Inc. 3131 RDU Center Drive, Suite 135 Morrisville, NC 27560, USA

Telit Wireless Solutions Co., Ltd. 8th Fl., Shinyoung Securities Bld. 6, Gukjegeumyung-ro8-gil, Yeongdeungpo-gu Seoul, 150-884, Korea Telit Wireless Solutions Ltd. 10 Habarzel St. Tel Aviv 69710, Israel

Telit Wireless Solutions Technologia e Servicos Ltda Avenida Paulista, 1776, Room 10.C 01310-921 São Paulo, Brazil

Telit reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. The information contained herein is provided "as is". No warranty of any kind, either express or implied, is made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This document may be revised by Telit at any time. For most recent documents, please visit www.telit.com

Copyright © 2016, Telit