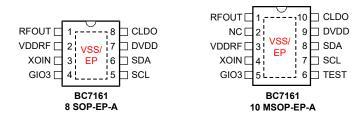


Features

- Supports GFSK (BT=0.5) modulation with 1Mbps data rate, compliant with BLE standard
- Operating frequency: 2402/2426/2480MHz
- Operating voltage range: 2.0V~3.6V
- Programmable TX power
 - High power matching: -10/-5/-2/+5dBm (Max. +8dBm)
 - Low power matching: -10/-5/0/+2dBm (Max. +5dBm)
- Low current consumption
 - Low deep sleep current: 0.35µA
 - TX current consumption: 19mA @ 5dBm TX power
 - TX current consumption: 12mA @ -5dBm TX power
- Supports 32MHz crystal
 - Synthesizer DCXO Loop RFOUT 🔀 ΡA CP/PFD 🗙 XOIN Filter LIRC MMD POR MUX + DSM SCL Filter CLDO 🔀 Digital LDOs SDA Control VCO Register Cal GIO3 GND BG Channel Setting : Expose Pad

Block Diagram


- FCC/ETSI compliant
- Package types: 8-pin SOP-EP, 10-pin MSOP-EP

General Description

Bluetooth Beacon adopts BLE advertising feature to support new applications such as indoor navigation, healthcare, etc. The advertised packets are placed in the Channel 37, 38 and 39 to avoid the interference from WiFi channels at ISM band. The BC7161 is aimed for the Beacon device for various proximity aware applications.

The BC7161 is a low-cost 2.4GHz BLE Beacon transmitter. With an external 32MHz crystal (XO), an MCU and a few ceramic capacitors, it can implement a complete Beacon device. The output power level can be programmed from -10dBm to +5dBm for various applications. Maximum of +8dBm with 24mA current consumption can be achieved even for a low-cost 8-pin SOP-EP package.

Pin Assignment

Pin Description

Pi	n No.	Pin Name	Turne	Din Decerintian			
8SOP-EP	10MSOP-EP	Pin Name	Туре	Pin Description			
1	1	RFOUT	AO	RF output signal from PA, connected to a matching circuit			
2	3	VDDRF	PWR	RF analog positive power supply			
3	4	XOIN	AI	Crystal input			
4	5	GIO3	DI/DO	General purpose pin			
_	6	TEST	_	Not connected, leave floating			
5	7	SCL	DI	I ² C clock input			
6	8	SDA	DI/DO	I ² C data			
7	9	DVDD	PWR	RF digital positive power supply			
8	10	CLDO	PWR	LDO output, connected to a bypass capacitor			
_	2	NC	_	No connection			
_	_	VSS/EP	PWR	Exposed pad, must be connected to ground			
Legend: DI: Digital Input; DI/DO: Digital Input/Output; AI: Analog Input;							

Legend: DI: Digital Input; DI/I AO: Analog Output;

DI/DO: Digital Input/Output; PWR: Power

The backside plate of EP shall be well soldered to ground on PCB, otherwise it will downgrade RF performance.

Absolute Maximum Ratings

Supply VoltageVss-0.3V to $V_{\text{SS}}\text{+}3.6V$	Operating Temperature40°C to 85°C
Voltage on I/O Ports $V_{\text{SS}}\text{-}0.3V$ to $V_{\text{DD}}\text{+}0.3V$	ESD HBM±2kV
Storage Temperature60°C to 150°C	

The device is ESD sensitive. HBM (Human Body Mode) is based on MIL-STD-883.

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

 $Ta{=}25^\circ\text{C}, \ V_{\text{DD}}{=}3.3\text{V}, \ f_{\text{XTAL}}{=}32\text{MHz}, \\ GFSK \ modulation \ with \ matching \ circuit, \ unless \ otherwise \ specified$

	1					·				
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit				
T _{OP}	Operating Temperature	_	-40		85	°C				
V _{DD}	Supply Voltage		2.0	3.3	3.6	V				
Digital I/C	Digital I/Os									
VIH	High Level Input Voltage		0.7×V _{DD}		V _{DD}	V				
VIL	Low Level Input Voltage		0		0.3×V _{DD}	V				
V _{он}	High Level Output Voltage	I _{он} =-5mA	0.8×V _{DD}		V _{DD}	V				
Vol	Low Level Output Voltage	Io∟=5mA	0		0.2×V _{DD}	V				
Current C	Consumption									
DeepSleep	Deep Sleep Mode Current		_	0.35	1.00	μA				
Ildle	Idle Mode Current	LIRC on	_	1.6	—	μA				
LightSleep	Light Sleep Mode Current	X'tal on	_	1	_	mA				

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
		RF output power=-10dBm	—	10.5	—	
		RF output power=-5dBm	—	12.5	—	
	TX Mode Current (High Power Matching)	RF output power=-2dBm (Note)	—	15.5	—	mA
	(Materinig)	RF output power=5dBm	—	19	—	
		RF output power=8dBm	—	24	_	
ITX		RF output power=-10dBm	—	10.5	—	
		RF output power=-5dBm	—	11.5	_	
	TX Mode Current (Low Power Matching)	RF output power=0dBm	—	15.5	—	mA
	(Matorinig)	RF output power=2dBm	_	17.5	—	
		RF output power=5dBm	_	19.5	_	

Note: Measured at the 8-pin SOP-EP package.

A.C. Characteristics

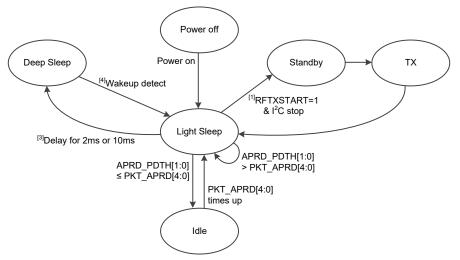
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	ter Characteristics	Test conditions		тур.	IVIAX.	Unit
Transmit			1			
		CH37	-	2402	—	
f _{RF}	RF Operating Frequency	CH38		2426	—	MHz
		CH39	—	2480	—	
DR	Data Rate	GFSK@f _{DEV} =250kHz	-	1	—	Mbps
f _{DEV}	Frequency Deviation	—	—	250	—	kHz
Pout	RF Transmit Output Power	_	-10	-2	8	dBm
f _{channel}	Channel Spacing	Non-overlapping channel spacing	_	2	—	MHz
	Occupied Bandwidth	_	_	1	_	MHz
		f < 1GHz	_	_	-36	
		47MHz < f < 74MHz				
SE _{TX}		87.5MHz < f < 108MHz	1		- 4	ID
	TX Spurious Emission (P _{OUT} =5dBm)	174MHz < f < 230MHz	1 —	_	-54	dBm
		470MHz < f < 862MHz	1			
		f > 1GHz	_	_	-30	1
		f _{RF} ± 2MHz	_	_	-20	dBm
	Adjacent Channel Power	f _{RF} ± (3+n)MHz; n=0, 1, 2	_	_	-30	abm
LO Chara	acteristics	,				
f _{LO}	Frequency Coverage Range	_	2400	_	2500	MHz
f STEP	Frequency Synthesizer Step	_	_	_	10	kHz
DN		PN@100k offset	_	-85	_	15 /11
PN	2.4GHz Phase Noise	PN@1M offset	_	-105	_	dBc/Hz
Crystal ()	('tal) Osicillator	J				
f xtal	X'tal Frequency	General case	_	32	_	MHz
ESR	X'tal Equivalent Series Resistance	_	_	_	100	Ω
CLOAD	X'tal Capacitor Load	_	12	_	16	pF
	X'tal Tolerance	_	-20	_	+20	ppm
		49US with a 12pF CLOAD	_	_	0.8	
t _{Startup}	X'tal Settling Time	3225 SMD with a 12pF C _{LOAD}	_	_	1	ms

Ta=25°C, V_{DD}=3.3V, f_{XTAL}=32MHz, GFSK modulation with matching circuit, unless otherwise specified

I²C Characteristics

					٦	Га=25°(
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
f _{SCL}	Serial clock frequency	_	_	—	1	MHz
t _{BUF}	Bus free time between stop and start condition	SCL=1MHz	250	-	_	ns
t _{LOW}	SCL low time	SCL=1MHz	500	_	_	ns
t _{ніGH}	SCL high time	SCL=1MHz	500	_	_	ns
t _{su(DAT)}	Setup time SDA \rightarrow SCL	SCL=1MHz	100	_	_	ns
t _{su(STA)}	Start condition setup time	SCL=1MHz	250	_	_	ns
t _{su(STO)}	Stop condition setup time	SCL=1MHz	250	_	_	ns
t _{h(DAT)}	Hold time SDA \rightarrow SCL	SCL=1MHz	100	_	_	ns
t _{h(STA)}	Start condition hold time	SCL=1MHz	250	_	_	ns
t _{r(SCL)}	Rise time of SCL signal	SCL=1MHz	_	_	100	ns
t _{f(SCL)}	Fall time of SCL signal	SCL=1MHz	_	_	100	ns
t _{r(SDA)}	Rise time of SDA signal	SCL=1MHz	_	_	100	ns
$t_{\text{f(SDA)}}$	Fall time of SDA signal	SCL=1MHz	_	-	100	ns

Functional Description

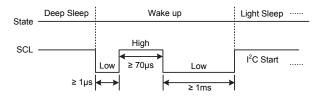

2.4GHz RF Transmitter

The BC7161 is a fully integrated 2.4GHz transmitter. It consists of a fractional-N synthesizer, a programmable power amplifier (PA) and power management. The synthesizer loop filter, 4.8GHz VCO and Digital Controlled XO (DCXO) are all integrated.

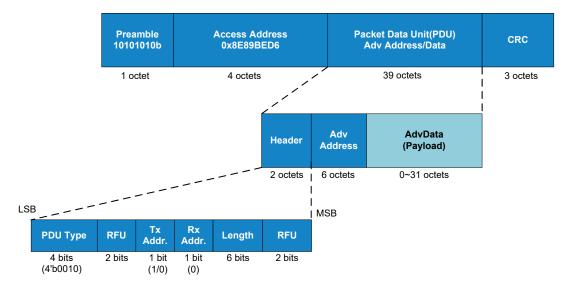
The transmitting session is an enhanced VCO direct modulation architecture. The GFSK modulation signal is fed into the PLL loop to take advantage of the fractional-N synthesizer. Another signal path is fed into the VCO directly to compensate the PLL loop response. As a result, it can generate a low FSK error GFSK signal. The modulated signal is fed into a power amplifier (PA) and the maximum output power can be up to +8dBm.

State Machine

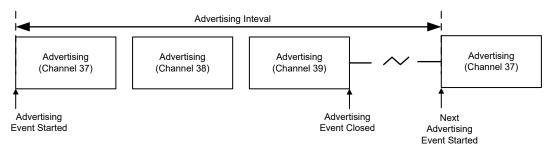
The device provides five operating modes, Power Off mode, Deep Sleep mode, Light Sleep mode, Standby mode and TX mode. An external MCU can set RF parameters, transmit data and wake up the RF chip via the I²C interface.



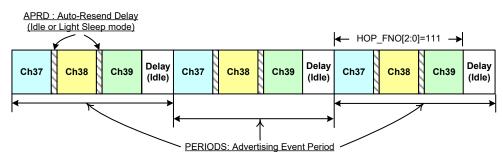
Note: 1. Once the RFTXSTART control bit is enabled, the I²C will stop and the RF chip will start transmiting data. 2. Deep Sleep mode: X'tal off.


Light Sleep mode: X'tal on, RF frequency synthesizer off. Standby mode: X'tal on, RF frequency synthesizer on, RF PA off. TX mode: X'tal on, RF frequency synthesizer on, RF PA on. Idle mode: X'tal off, LIRC on.

- 3. In the Light Sleep mode, if the SDA and SCL pin states both keep unchanged for 10ms, the device state will change to the Deep Sleep mode. If the SDA or SCL pin state has been toggled and then keeps unchanged, the timer will reset and recount until the 10ms time is up and then enter the Deep Sleep mode.
- 4. The device will be woken up from the Deep Sleep mode if a falling edge is detected on the SCL pin and the low pulse width should be maintained at least 1ms to return to Light Sleep state. After this, the master MCU can control the device based on the I²C format.


5. Each frame will be sent consecutively until the frame counter (PKT_AUTORS) is finished then enter the Light Sleep mode.

Packet Format



Packet Event Timing

Advertising Inteval = Advertising Event Period + Random

PKT_APRD[4:0]: Packet format auto-resend delay, 250µs (Min.) ~ 8ms (Max.)

PKT_AUTORS[7:0]: Packet event auto-resend times

- 0: No resend (auto-resend disabled)
- 1: Resend 1 time
- 2: Resend 2 times
- 254: Resend 254 times
- 255: Always resend periodicly until the MCU forcibly turns off the TX transmitter.

During the TX transmission, if the MCU clears the RFTXSTART bit to zero, the TX transmitter will stop after the current advertising event is completed.

PKT_PERIODS[9:0]: Advertising event period

Period=10ms×(1+PKT_PERIODS[9:0])

00-0000-0000: 10ms

00-0000-0001: 20ms

•••

11-1111-1111: 10240ms (10.24s)

HOP_FNO[2:0]: Hopping frequency number

Bit0/Bit1/Bit2 indicates the enable bit for Ch37/Ch38/Ch39 respectively

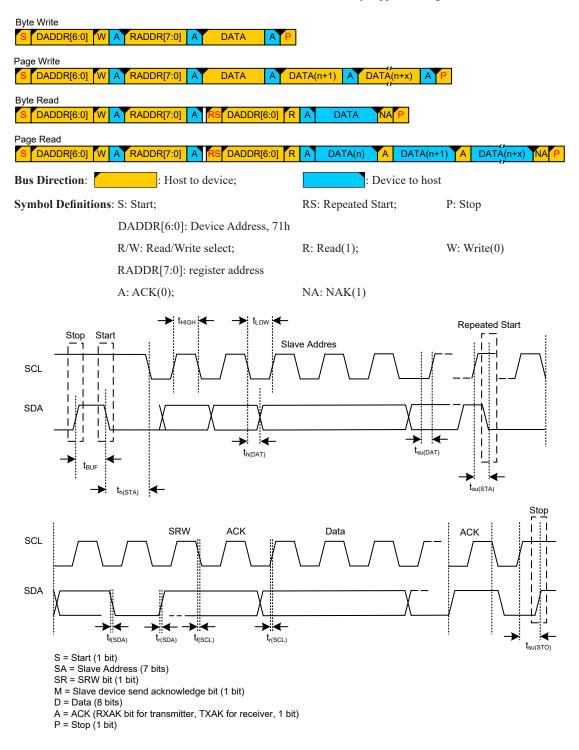
It is not recommended to set these bits to "000". Ensure that there is at least one channel enabled.

For example:

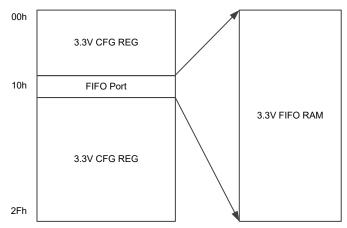
001: Ch37 enabled, Ch38/Ch39 disabled; each advertising event only includes Ch37

110: Ch38/Ch39 enabled, Ch37 disabled; each advertising event only includes Ch38 and Ch39

101: Ch37/Ch39 enabled, Ch38 disabled; each advertising event only includes Ch37 and Ch39


111: Ch37/Ch38/Ch39 enabled; each advertising event includes Ch37, Ch38 and Ch39.

I²C Serial Programming


The device supports the I²C format for byte write, page write, byte read and page read formats. Regarding the page write/read, register address will not automatically increase for the FIFO port (address: 10h) when continuously writing/reading data to/from the FIFO.

It should be noted that the I²C is a non-standard I²C interface, which only supports a single device for connection.

Memory Mapping

The steps for writing data to the FIFO via the I²C are described below:

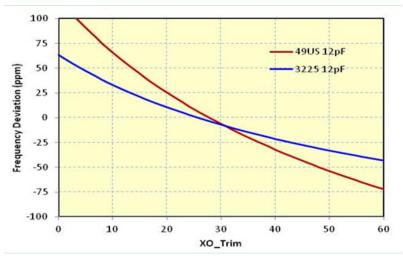
- 1. Set the RSTPDUFF bit to 1 and clear the FIFO pointer. When the FIFO has been cleared the RSTPDUFF bit will be cleared to zero automatically.
- 2. Write data continuously to the address 10h. The I²C register address will stay at 10h without increament.
- 3. Configure the PDULEN bit field with a PDU data length to be transmitted.
- 4. To re-configure the PDU data, repeat step $1 \sim 3$.

Configuration Registers

Adda	News				Bit						
Addr.	Name	7	6	5	4	3	2	1	0		
00h	CFG0		-			XO_TRI	M[5:0]				
07h	CFG7		Setting1								
0Ch	CFGC				RFTXP_	1					
0Dh	CFGD				RFTXP_	2					
10h	CFG10			F	PDUDATA[7:0]					
11h	CFG11	RSTPDUFF			PD	ULEN[6:0]					
12h	CFG12		-			PDUDPT	R[5:0]				
15h	CFG15			PK	T_AUTOR	S[7:0]					
16h	CFG16	APRD_PD	DTH[1:0]	TH[1:0] RNDDLY_ EN PKT_APRD[4:0]							
17h	CFG17		PKT_PERIODS[7:0]								
18h	CFG18							PKT_PE	RIODS[9:8]		
1Ah	CFG1A	RFTXSTART		—			H	OP_FNO[2	2:0]		
1Dh	CFG1D	Cal1				_					
1Eh	CFG1E								Cal2		
25h	CFG25	—		GIO3S[2:0]				_			
26h	CFG26			-		GIOPU					
27h	CFG27	—	LSTOS	LSTOM	[1:0]			_			
2Ah	CFG2A		Setting2								
30h	CFG30		CHIPID[7:0]								
31h	CFG31		CHIPID[15:8]								
33h	CFG33	RMSOUT	— RST_RI					RST_RF			
36h	CFG36								TX_FLAG		

Note that for the addresses which are not listed in this table, it is suggested not to change their initial values.

• CFG0: Configuration Register 0


Bit	7	6	5	4	3	2	1	0	
Name	—	_	XO_TRIM[5:0]						
R/W	_	_		R/W					
POR	0	0	1 0 0 0 0 0						

Bit 7~6 Reserved bits, cannot be changed

Bit 5~0 XO_TRIM[5:0]: Trim value for the internal capacitor load of the crystal

49US 32MHz XO with a 12pF C_{LOAD} : The seggested setting is 1CH. Within ±25ppm frequency error, 1 trim code shifts -2.95ppm.

3225SMD 32MHz XO with a 12pF C_{LOAD} : The seggested setting is 1AH. Within $\pm 25\text{ppm}$ frequency error, 1 trim code shifts -1.75ppm.

• CFG7: Configuration Register 7

Bit	7	6	5	4	3	2	1	0	
Name	Setting1								
R/W		R/W							
POR	1	0	0	1	1	0	0	1	

Bit 7~0 Reserved bits, must be set to "10010101" after power on

CFGC: Configuration Register C

Bit	7	6	5	4	3	2	1	0		
Name		RFTXP_1								
R/W		R/W								
POR	0	0	1	0	0	0	0	1		

• CFGD: Configuration Register D

Bit	7	6	5	4	3	2	1	0		
Name	RFTXP_2									
R/W		R/W								
POR	1	0	0	0	0	1	1	1		

The recommended setting values (hexadecimal) for the CFGC and CFGD registers are listed below.

8-pin SOP-EP

TX Power	High Powe	er Matching	Low Powe	r Matching
TX Power	CFGC (RFTXP_1)	CFGD (RFTXP_2)	CFGC (RFTXP_1)	CFGD (RFTXP_2)
8dBm	A1	AF		
5dBm	A2	67	A1	A7
2dBm			A2	A1
0dBm			AF	D7
-2dBm	AF	D7		
-5dBm	AF	77	AF	73
-10dBm	AF	71	AF	71

10-pin MSOP-EP

TX Power	High Powe	er Matching
TA POwer	CFGC (RFTXP_1)	CFGD (RFTXP_2)
8dBm	A4	87
5dBm	A2	83
2dBm		
0dBm	AF	D7
-5dBm	AF	73
-10dBm	AF	71

• CFG10: Configuration Register 10

Bit	7	6	5	4	3	2	1	0
Name		PDUDATA[7:0]						
R/W				V	V			
POR	х	x x x x x x x x						

Bit 7~0 PDUDATA[7:0]: PDU data FIFO write port

• CFG11: Configuration Register 11

Bit	7	6	5	4	3	2	1	0
Name	RSTPDUFF			l	PDULEN[6:0]]		
R/W	R/W				R/W			
POR	0	0	0	1	1	1	1	1

Bit 7 RSTPDUFF: Reset PDU data FIFO, automatically cleared after completion

Bit 6~0 **PDULEN[6:0]**: PDU data length (unit: octet); maximum: 39 octets

• CFG12: Configuration Register 12

Bit	7	6	5	4	3	2	1	0
Name	—	—	PDUDPTR[5:0]					
R/W	—	—			R/	W		
POR	0	0	0 0 0 0 0 0					0

Bit 7~6 Reserved bits, cannot be changed

Bit 5~0 **PDUDPTR[5:0]**: PDU data pointer, points to the start address to execute CRC/whitening operations in PDU FIFO

...

• CFG15: Configuration Register 15

Bit	7	6	5	4	3	2	1	0	
Name		PKT_AUTORS[7:0]							
R/W				R/	W				
POR	1	1	1	1	1	1	1	1	

Bit 7~0 **PKT_AUTORS**[7:0]: Packet event auto-resend times

00h: No resend, auto-resend disabled

01h: Resend 1 time

02h: Resend 2 times

FFh: Always resend until RFTXSTART=0

• CFG16: Configuration Register 16

Bit	7	6	5	4	3	2	1	0
Name	APRD_P	DTH[1:0]	RNDDLY_EN	_ 1 1				
R/W	R/	W/W	R/W			R/W		
POR	0	0	1	1	1	1	1	1

Bit 7~6 APRD_PDTH[1:0]: Time threshold for automatically entering Idle mode

00: 1ms

01: 1.5ms

10: 2ms

11: 3ms

These bits define the time threshold that the device should automatically enter the Idle mode. The device will stay in the Light Sleep mode if the automatic retransmission interval defined by PKT_APRD[4:0] is less than the time threshold defined by APRD_PDTH[1:0]. Otherwise, the device will enter the Idle mode.

APRD PDTH[1:0] > PKT APRD[4:0] \rightarrow Enter light sleep mode

 $APRD_PDTH[1:0] \le PKT_APRD[4:0] \rightarrow Enter Idle mode$

Bit 5 RNDDLY_EN: Enable random delay (250~8000µs) per advertising event period

0: Disable

1: Enable

Bit 4~0 **PKT_APRD[4:0**]: Packet format auto-resend delay

00000: 250µs

00001: 500µs

. . .

00010: 750µs

11111: 8000µs (8ms)

• CFG17: Configuration Register 17

Bit	7	6	5	4	3	2	1	0	
Name		PKT_PERIODS[7:0]							
R/W		R/W							
POR	0	0 1 1 0 0 1 1							

Bit 7~0 **PKT_PERIODS**[7:0]: Advertising event period low byte

• CFG18: Configuration Register 18

Bit	7	6	5	4	3	2	1	0
Name	—	—	—	—	—	—	PKT_PER	IODS[9:8]
R/W	_	—	_	—	—	—	R/	W
POR	0	0	0	0	0	0	0	0

Bit 7~2 Reserved bits, cannot be changed

Bit 1~0 **PKT_PERIODS[9:8]**: Advertising event period high byte

Delay=10ms×(1+PKT_PERIODS[9:0]); range: 10ms (000h) ~ 10240ms (3FFh)

• CFG1A: Configuration Register 1A

Bit	7	6	5	4	3	2	1	0
Name	RFTXSTART	—	—	—	—	HOP_FNO[2:0]		
R/W	R/W	—	—	—	—		R/W	
POR	0	0	0	0	0	1	1	1

Bit 7 **RFTXSTART**: RF layer2 transmission start control

0: RF layer2 transmission stops

1: RF layer2 transmission starts

This bit will be cleared to zero by hardware when the automatic retransmission count is full and all the payloads are completed. If this bit is cleared by the MCU, the RF TX will stop transmission.

Note: When the RFTXSTART bit changes from 1 to 0, which means to finish the WOT mode, the device needs an additional 70 μ s to exit the WOT mode. During this time any I²C commands including WAKEUP would not be accepted.

- Bit 6~3 Reserved bits, cannot be changed
- Bit 2~0 HOP_FNO[2:0]: Hopping frequency number

HOP_FNO[0]: Enable channel 37 (2402MHz)

HOP_FNO[1]: Enable channel 38 (2426MHz)

HOP_FNO[2]: Enable channel 39 (2480MHz)

It is not recommended to set these bits to "000". Ensure that there is at least one channel enabled.

• CFG1D: Configuration Register 1D

Bit	7	6	5	4	3	2	1	0
Name	Cal1	—	—	—	—	—	—	—
R/W	R/W	—	—	—	—	—	—	_
POR	0	0	0	1	1	1	1	0

Bit 7 Cal1: Described in the CFG1E register

Bit 6~0 Reserved bits, cannot be changed

CFG1E: Configuration Register 1E

Bit	7	6	5	4	3	2	1	0
Name	—	_	—	_	—	_	_	Cal2
R/W	_	_	_	_	_	_	_	R/W
POR	0	0	1	1	0	1	0	0

Bit 7~1 Reserved, must be set to "0011111" after power on

Bit 0 **Cal2**: Cal1 and Cal2 both should be set to "1" during every power on, then wait until both are cleared to "0", which means IC calibration has finished.

• CFG25: Configuration Register 25

Bit	7	6	5	4	3	2	1	0
Name	—		GIO3S[2:0]			—	_	_
R/W	_		R/W			—	_	—
POR	0	0	0	0	0	0	0	0

Bit 7 Reserved bit, cannot be changed

Bit 6~4 GIO3S[2:0]: GIO3 pin function selection

000: No function, input

001~100: Reserved

101: RFTXSTART output

110: Reserved

111: TXACT, output

Bit 3~0 Reserved bits, cannot be changed

CFG26: Configuration Register 26

Bit	7	6	5	4	3	2	1	0
Name	—	_	—	_	GIOPU	—	—	_
R/W	—	_	—		R/W	—	—	—
POR	0	0	0	0	1	1	1	1

Bit 7~4 Reserved bits, cannot be changed

Bit 3 GIOPU: GIO3 pull-up resistor control

0: Disable

1: Enable

Bit 2~0 Reserved bits, cannot be changed

• CFG27: Configuration Register 27

Bit	7	6	5	4	3	2	1	0
Name	—	LSTOS	LSTOM[1:0]		_	_	_	-
R/W	—	R/W	R/	R/W		_	-	-
POR	1	0	0	0	0	0	0	0

Bit 7 Reserved bit, cannot be changed

Bit 6 **LSTOS**: Light sleep time-out selection

0: 2ms

1: 10ms

Bit 5~4 LSTOM[1:0]: Light sleep time-out mode selection

00: I²C time-out turned on with 2ms/10ms delay, TX time-out turned on with 0s delay

01/10: I²C time-out turned on with 2ms/10ms delay, TX time-out turned on with 2ms/10ms delay

11: Time-out off, always in light sleep mode

Bit 3~0 Reserved bits, cannot be changed

CFG2A: Configuration Register 2A

Bit	7	6	5	4	3	2	1	0
Name		Setting2						
R/W				R/	W			
POR	0 1 0 1 0 0 0 0							

Bit 7~0 Reserved bits, must be set to "01000111" after power on

• CFG30: Configuration Register 30

Bit	7	6	5	4	3	2	1	0
Name		CHIPID[7:0]						
R/W				F	र			
POR	0 1 1 0 0 0 1							

Bit 7~0 CHIPID[7:0]: Chip ID low byte, 0x61

• CFG31: Configuration Register 31

Bit	7	6	5	4	3	2	1	0
Name	CHIPID[15:8]							
R/W				F	र			
POR	0	0 1 1 1 0 0 1						

Bit 7~0 CHIPID[15:8]: Chip ID high byte, 0x71

• CFG33: Configuration Register 33

Bit	7	6	5	4	3	2	1	0
Name	RMSOUT	—	—	—	—	_	—	RST_RF
R/W	R	—	_	_	_		_	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 **RMSOUT**: VCO oscillation detection (read only)

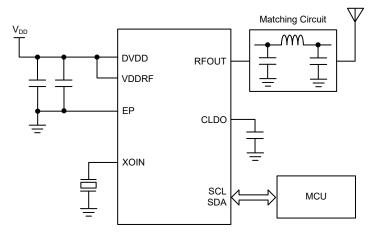
When the VCO oscillates and becomes stable, the RMSOUT bit will be set high by hardware. Otherwise the bit will be cleared to zero.

- Bit 6~1 Reserved bits, cannot be changed
- Bit 0 **RST_RF**: Registers reset control

Setting this bit high will reset the registers in the addresses 30h~3Fh. This bit will be cleared to zero after the reset is completed.

• CFG36: Configuration Register 36

Bit	7	6	5	4	3	2	1	0
Name	—	—	—		—	—	—	TX_FLAG
R/W	—	—	—	_	—	—	—	R
POR	0	0	0	0	0	0	0	0

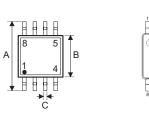

Bit 7~1 Reserved bits, cannot be changed

Bit 0 **TX_FLAG**: TX status flag

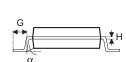
- 0: TX is free
- 1: TX is busy

Application Circuits

Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/</u> <u>Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

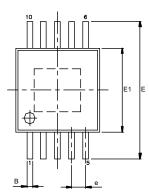

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

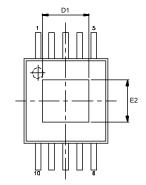
8-pin SOP-EP (150mil) Outline Dimensions

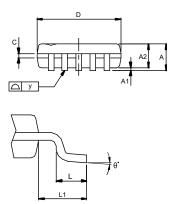
Cumhal		Dimensions in inch	
Symbol	Min.	Nom.	Max.
A	—	0.236 BSC	—
В	—	0.154 BSC	—
С	0.012	—	0.020
C'	_	0.193 BSC	—
D	—	—	0.069
D1	0.076	—	0.090
E	_	0.050 BSC	—
E2	0.076	—	0.090
F	0.000	_	0.006
G	0.016	—	0.050
Н	0.004	_	0.010
α	0°	—	8°

A A

НН


£


Symbol		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	—	6.00 BSC	—
В	—	3.90 BSC	—
С	0.31	_	0.51
C'	—	4.90 BSC	_
D	_	_	1.75
D1	1.94	—	2.29
E	_	1.27 BSC	_
E2	1.94	_	2.29
F	0.00	—	0.15
G	0.40	_	1.27
Н	0.10	—	0.25
α	0°	—	8°


Note: For this package type, refer to the package information provided here, which will not be updated by the Holtek website.

10-pin MSOP-EP (118mil) Outline Dimensions

THERMALLY ENHANCED VARIATIONS ONLY

Symphol		Dimensions in inch	
Symbol	Min.	Nom.	Max.
А	_	—	0.043
A1	0.000	—	0.006
A2	0.030	0.033	0.037
В	0.007	—	0.013
С	0.003	—	0.009
D	_	0.118 BSC	_
D1	0.059	—	0.076
E	_	0.193 BSC	_
E1	_	0.118 BSC	_
E2	0.055	—	0.071
е	_	0.020 BSC	_
L	0.016	0.024	0.031
L1	_	0.037 BSC	_
У	_	0.004 BSC	_
θ	0°	_	8°

Crumbal		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	_	—	1.10
A1	0.00	_	0.15
A2	0.75	0.85	0.95
В	0.17	—	0.33
С	0.08	—	0.23
D	—	3.00 BSC	—
D1	1.51	—	1.93
E	_	4.90 BSC	—
E1	_	3.00 BSC	_
E2	1.40	_	1.80
е	_	0.50 BSC	—
L	0.40	0.60	0.80
L1		0.95 BSC	—
у	_	0.10 BSC	_
θ	0°	_	8°

Copyright[©] 2022 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any third-party's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.